Browsing by Author "Wang, ZY"
Now showing 1 - 19 of 19
Results Per Page
Sort Options
- ItemAluminum borohydride complex with ethylenediamine: crystal structure and dehydrogenation mechanism studies(American Chemical Society, 2016-04-20) Gu, QF; Wang, ZY; Filinchuk, Y; Kimpton, JA; Brand, HEA; Li, Q; Yu, XBWe report the structure of an aluminum borohydride ethylenediamine complex, Al(EDA)3·3BH4·EDA. This structure was successfully determined using X-ray powder diffraction and was supported by first-principles calculations. The complex can be described as a mononuclear complex exhibiting three-dimensional supramolecular structure, built from units of Al[C2N2H8]3, BH4, and ethylenediamine (EDA) molecules. Examination of the chemical bonding indicates that this arrangement is stabilized via dihydrogen bonding between the NH2 ligand in EDA and the surrounding BH4. The partial ionic bonding between the Al and N atoms in EDA forms a five-member ring (5MR), an Al[NCCN] unit. The calculated H2 removal energies confirm that it is energetically favorable to remove the loosely bonded EDA and H atoms with N–H···H–B dihydrogen bonds upon heating. Our results suggest that the NH2 terminal ligand in the EDA molecule combines with a H atom in the BH4 group to release H2 at elevated temperature, and our results confirm that the experimental result Al(EDA)3·3BH4·EDA can release 8.4 wt % hydrogen above 149 °C with detectable EDA molecules. This work provides insights into the dehydrogenation behavior of Al(EDA)3·3BH4·EDA and has implications for future development of promising high-performance metal borohydride ethylenediamine complexes. © 2016 American Chemical Society
- ItemThe characterisation and formation of novel microstructural features in a Ti−Nb−Zr−Mo−Sn alloy manufactured by Laser Engineered Net Shaping (LENS)(Elsevier, 2021-01) Zhu, HL; Wang, ZY; Muránsky, O; Davis, J; Yu, S; Kent, D; Wang, G; Dargusch, MSNovel microstructural features were found in the Ti−Nb−Zr−Mo−Sn alloy manufactured by Laser Engineered Net Shaping (LENS). Examination of the microstructure showed that the fabricated sample exhibits a layered morphology with arced deposit boundaries. Novel distributions and morphologies of various phases including β, α, α'' and ω were detected in the LENS-manufactured part which substantially differ to conventionally processed alloy counterparts. The β grains and subgrains spread over multiple deposits and layers, aligned to the build direction, forming a complex network microstructure comprising large highly textured columnar grains aligned to β phase <001> orientations. The α precipitates have needle-like shapes and are widely distributed across a majority of the deposited layers, whereas the nanoscale ω particles were present in regions absent of α precipitation. Localised, massively transformed α'' phase with a very long and curved rod-like shape and substantial surface defects was identified. The formation of these novel microstructural features is investigated and discussed in the context of the characteristics of the LENS fabrication process. The microstructures are attributed to the complex thermal history in the unique deposit-by-deposit and layer-by-layer method employed during LENS additive manufacturing in conjunction with the complex precipitation behaviours exhibited by TiNb-based alloys. The characteristics and formation mechanisms of the LENS-manufactured Ti−Nb−Zr−Mo−Sn alloy microstructures revealed here provide a basis to optimize LENS and post-LENS heat treatment processes to optimize microstructures for improved performance. © 2020 Elsevier B.V
- ItemDevelopment of a new powder-bed arc additive manufacturing approach for producing high entropy alloys(Materials Australian and The Australian Ceramic Society, 2022-06-01) Dong, BS; Wang, ZY; Pan, Z; Li, HJHigh entropy alloys (HEAs) have gained significant attention over the past decade from both academic and industrial communities due to their unique design concept and promising properties. The manufacturing of this emerging material with desired properties remains challenging. A new powder-bed arc additive manufacturing (PAAM) has been developed at the University of Wollongong for producing HEAs. This approach, with a high level of flexibility for controlling the forming process and the characteristic rapid solidification, enables the tailoring of the microstructure through the process control and the effective reduction of the chemical segregation in these compositionally complexed alloys. Additionally, compared with the laser and electron beam based additive manufacturing, PAAM is advantageous for higher production rate hence it is promising in industrial applications for producing bulk components in shorter period. The production of a eutectic AlCoCrFeNi2.1 HEA using this new PAAM approach will be presented to demonstrate its capability. Then, the FeCr0.4V0.3Ti0.2Ni1.3 HEA with low neutron cross-section is successfully designed and fabricated in this system. The good tensile properties of this novel HEA make it become a potential candidate as a structural material in the future nuclear industry.
- ItemDevelopment of a new powder-bed arc additive manufacturing approach for producing high entropy alloys(Australian Nuclear Science and Technology Organisation, 2021-11-26) Dong, BS; Muránsky, O; Zhu, Hl; Muránsky, O; Wang, ZY; Reid, M; Li, HJHigh entropy alloys (HEAs) have gained significant attention over the past decade from both academic and industrial communities due to their unique design concept and promising properties. The manufacturing of this emerging material with desired properties remains challenging. Most of previous work utilized conventional vacuum arc melting and casting methods for producing HEAs. However, the disadvantage of typical casting microstructure, columnar dendrite and serious chemical segregation, causes serious deterioration to their mechanical properties. A new powder-bed arc additive manufacturing (PAAM) has been developed at the University of Wollongong for producing HEAs. This approach, with a high level of flexibility for controlling the forming process and the characteristic rapid solidification, enables the tailoring of the microstructure through the process control and the effective reduction of the chemical segregation in these compositionally complexed alloys. Additionally, compared with the laser and electron beam based additive manufacturing, PAAM is advantageous for higher production rate hence it is promising in industrial applications for producing bulk components in shorter period. The production of a eutectic AlCoCrFeNi2.1 HEA using this new PAAM approach will be presented to demonstrate its capability. The characterisation work shows that the produced AlCoCrFeNi2.1 samples have a lamellar microstructure consisting of the soft but ductile face-centered cubic (FCC) phase as well as the hard body-centered-cubic (BCC) phase. The material demonstrates a remarkable combination of excellent ultimate tensile strength (719 MPa) and ductility (elongation ~27%). The current work has demonstrated that the developed PAAM process is promising for producing HEA components with desired properties. © The Authors
- ItemEffects of heat treatment on microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy(Materials Australian and The Australian Ceramic Society, 2022-06-01) Qiu, Z; Wu, B; Zhu, H; Wang, ZY; Wexler, D; Van Duin, S; Pan, Z; Li, HHastelloy C276 is a Ni-Cr-Mo based superalloy which has a high potential for application in high temperature and extreme corrosive environment due to its high corrosion resistance and excellent mechanical properties. In this research, the wire arc additive manufacturing (WAAM) process was successfully used to fabricate the defect-free Hastelloy C276 component. The microstructure of the component was characterized using optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction, the mechanical properties were evaluated via tensile and hardness tests. The as-deposited component exhibited anisotropy on both microstructure and mechanical properties. The influences of solid solution heat treatment and stress relief heat treatment on microstructure and mechanical properties were also investigated. It was found that both microstructure and mechanical properties were significantly modified after heat treatment. Preliminary creep tests indicted the texture has a strong influence on the creep performance of the component.
- ItemEffects of post heat treatment on the microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy(Elsevier, 2021-07) Qiu, ZJ; Wu, BT; Wang, ZY; Wexler, D; Carpenter, K; Zhu, HL; Muránsky, O; Zhang, JR; Li, HJPost-processing is often inevitable for most additively manufactured components in order to improve material properties and product quality. In this study, the influence of post-heat treatments (PHTs) at 871 °C and 1177 °C on the microstructure and mechanical properties of a nickel-base Hastelloy C276 alloy prepared using wire arc additive manufacturing (WAAM) were investigated. The results showed that after a PHT at 871 °C, the as-built alloy was strengthened due to the formation of a large amount of Mo-rich nano-sized μ phase in the interdendritic areas. This was at the expense of a significant ductility loss. In contrast, no μ phase precipitates were observed after PHT at 1177 °C. Furthermore, the 1177 °C treatment led to the dissolution of the Mo-rich p phase which was present in the as-built sample, increased solid-solution strengthening, and improvements in both strength and ductility concurrently. This study enables an improved understanding of post-processing-microstructure-property inter-relationships for Hastelloy C276 alloy prepared by WAAM, providing guidelines for further microstructure optimization through PHT to improve the material's mechanical properties. © 2021 Elsevier Inc.
- ItemHydride precipitation and its influence on mechanical properties of notched and unnotched Zircaloy-4 plates(Elevier Science BV., 2013-05-01) Wang, ZY; Garbe, U; Li, HJ; Harrison, RP; Toppler, K; Studer, AJ; Palmer, T; Planchenault, GThe hydride formation and its influence on the mechanical performance of hydrided Zircaloy-4 plates containing different hydrogen contents were studied at room temperature. For the unnotched plate samples with the hydrogen contents ranging from 25 to 850 wt. ppm, the hydrides exerted an insignificant effect on the tensile strength, while the ductility was severely degraded with increasing hydrogen content. The fracture mode and degree of embrittlement were strongly related to the hydrogen content. When the hydrogen content reached a level of 850 wt. ppm, the plate exhibited negligible ductility, resulting in almost completely brittle behavior. For the hydrided notched plate, the tensile stress concentration associated with the notch tip facilitated the hydride accumulation at the region near the notch tip and the premature crack propagation through the hydride fracture during hydriding. The final brittle through-thickness failure for this notched sample was mainly attributed to the formation of a continuous hydride network on the thickness section and the obtained very high hydrogen concentration (estimated to be 1965 wt. ppm). © 2013, Elsevier Ltd.
- ItemHydrogen-induced microstructure, texture and mechanical property evolutions in a high-pressure torsion processed zirconium alloy(Elsevier Ltd., 2012-11-01) Wang, ZY; Garbe, U; Li, HJ; Studer, AJ; Harrison, RP; Callaghan, MD; Wang, Y; Liao, XZThe gaseous hydriding-induced evolutions of the microstructure, texture and mechanical properties of Zircaloy-4 processed by high-pressure torsion (HPT) were assessed. Much delta-ZrH(1.66) precipitation at 15 atm (21%) incurred significant hardening of vacuum-annealed HPT samples, and pure epsilon-ZrH(2) obtained at 20 atm showed a superior microhardness of 470 HV(0.3) and a low fracture toughness of 0.63 MPa m(1/2). The delta-hydrides presented strong (1 1 1) texture and followed the (0 0 0 1)(alpha-Zr)//{1 1 1}(delta-ZrH1.66) orientation relationship with the alpha-Zr matrix. During hydriding, alpha-Zr recrystallization texture was developed from the initial deformation texture. Copyright © 2012 Acta Materialia Inc.
- ItemImpact of pre-existing crystal lattice defects on the accumulation of irradiation-induced damage in a C/C composite(Elsevier, 2022-06) Wang, ZY; Muránsky, O; Zhu, HL; Wei, T; Zhang, Z; Ionescu, M; Yang, C; Davis, J; Hu, G; Monroe, P; Windes, WA carbon-fibre reinforced carbon-matrix (C/C) composite was irradiated with 30 MeV C6+ ions to a peak damage of ∼25 dpa. Ion irradiation-induced microstructural changes were mainly studied using Raman spectroscopy. The irradiation-induced crystal lattice defect accumulation in the C/C composite was compared with a reference of PCIB graphite (nuclear-grade). It shows that a high concentration of pre-existing crystal lattice defects in the studied C/C composite have a significant impact on the unexpectedly high disordering of the crystal lattice observed along the entire ion range. In comparison, PCIB graphite with much less pre-existing crystal lattice defects behaves in a more predictable manner with the irradiation damage accumulated in a narrow high dpa region. We rationalised that a large number of pre-existing crystal lattice defects in the C/C composite lead to a stronger electron-phonon coupling and play an important role on the formation of stable crystal lattice defects due to electronic energy loss during ion irradiation. The present results have implications for the development of C/C composites for radiation-tolerant applications, in terms of the crystal lattice defect elimination in the as-manufactured microstructure. Additionally, this investigation identifies a fundamental knowledge gap in the electronic energy loss effect on the irradiation damage produced in carbon-based materials at intermediate ion energies. © 2022 Elsevier B.V.
- ItemLow neutron cross-section FeCrVTiNi based high-entropy alloys: design, additive manufacturing and characterization(OAE Publishing, 2022-01-13) Dong, BS; Wang, ZY; Zhu, HL; Muránsky, O; Qiu, ZJ; Shen, C; Pan, ZX; Li, HJThe development of high-entropy alloys (HEAs) based on the novel alloying concept of multi-principal components presents opportunities for achieving new materials with desired properties for increasingly demanding applications. In this study, a low neutron cross-section FeCrVTiNi-based HEA was developed for potential nuclear applications. A face-centred cubic (FCC) HEA with the nominal composition of FeCr0.4V0.3Ti0.2Ni1.3 is proposed based on the empirical thermodynamic models and the CALculation of PHAse diagrams (CALPHAD) calculation. Verifications of the predictions were performed, including the additive manufacturing of the proposal material and a range of microstructural characterizations and mechanical property tests. Consistent with the prediction, the as-fabricated HEA consists of a dominant FCC phase and minor Ni3Ti precipitates. Moreover, significant chemical segregation in the alloy, as predicted by the CALPHAD modelling, was observed experimentally in the produced dendritic microstructure showing the enrichment of Ni and Ti elements in the interdendritic regions and the segregation of Cr and V elements in the dendritic cores. Heterogenous mechanical properties, including microhardness and tensile strengths, were observed along the building direction of the additively manufactured HEA. The various solid solution strengthening effects, due to the chemical segregation (in particular Cr and V elements) during solidification, are identified as significant contributing factors to the observed mechanical heterogeneity. Our study provides useful knowledge for the design and additive manufacturing of compositionally complex HEAs and their composition-microstructure-mechanical property correlation. © The Author(s) 2022
- ItemMicrostructural characterisation and hardness assessment of wire arc cladded Hastelloy C276 on creep resistant steel P91(Elsevier, 2022-07) Wu, BT; Qiu, ZJ; Dong, BS; Muránsky, O; Zhu, HL; Wang, ZY; Pan, ZX; Li, HJA new structure with nickel-based Hastelloy C276 alloy cladding on creep resistant steel P91 was developed in this study for nuclear applications. The microstructure, including precipitation and grain size, boundaries, orientation and hardness distribution of cladding structures with/without post heat treatment were explored using a range of microscopy techniques and hardness testing. The results show that the as-cladded structure exhibits highly hierarchical heterogeneity, which is mainly related to the remarkably coarse-grained microstructure in the heat-affected zone on the steel side, and typically columnar dendrites formed on the Hastelloy side. After tempering heat treatment, the specimen exhibits re-orientated grains and homogenized microstructure. Meanwhile, the ratio of high angle grain boundaries (HAGBs) in steel regions significantly increases, and the hardness values turn even distribution. This study achieves a sound metallurgical bonding between two structural materials and offers insights into the development of dissimilar metal components with in-site specific properties. © 2022 The Author(s). Published by Elsevier B.V.
- ItemMicrostructural evolution during gaseous hydrogen charging of Zircaloy-4 processed by high-pressure torsion: a comparative study(Elsevier B.V., 2012-02-01) Wang, ZY; Li, HJ; Garbe, U; Callaghan, MD; Wang, Y; Liao, XZThe original and high-pressure torsion (HPT) processed Zircaloy-4 materials were hydrided using gaseous hydrogen charging at different hydrogen pressures (10, 15 and 20 atm). The phase and microstructural evolutions of the samples during hydriding were characterized. It showed that when hydriding at the identical conditions, more hydrides tended to form in the HPT samples compared to that of the original ones. At a hydrogen pressure of 20 atm, the HPT sample was completely converted to epsilon-ZrH2 while some delta-ZrH1.66 hydrides (volume fraction similar to 5.73%) were present in the material without HPT preprocessing. The HPT samples exhibited high potential for the hydride precipitation, and the large concentration of lattice defects induced by HPT was considered to be responsible for this enhanced susceptibility. © 2011 Elsevier B.V.
- ItemMicrostructure and texture analysis of δ-hydride precipitation in Zircaloy-4 materials by electron microscopy and neutron diffraction(International Union of Crystallography, 2014-01-01) Wang, ZY; Garbe, U; Li, HJ; Wang, YB; Studer, AJ; Sun, GG; Harrison, RP; Liao, XZ; Vicente Alvarez, MA; Santisteban, JR; Kong, CThis work presents a detailed microstructure and texture study of various hydrided Zircaloy-4 materials by neutron diffraction and microscopy. The results show that the precipitated δ-ZrH1.66 generally follows the δ (111)//α(0001) and δ [110]//α[1120] orientation relationship with the α -Zr matrix. The δ-hydride displays a weak texture that is determined by the texture of the α-Zr matrix, and this dependence essentially originates from the observed orientation correlation between α-Zr and δ-hydride. Neutron diffraction line profile analysis and high-resolution transmission electron microscopy observations reveal a significant number of dislocations present in the δ-hydride, with an estimated average density one order of magnitude higher than that in the α-Zr matrix, which contributes to the accommodation of the substantial misfit strains associated with hydride precipitation in the α -Zr matrix. The present observations provide an insight into the behaviour of δ-hydride precipitation in zirconium alloys and may help with understanding the induced embrittling effect of hydrides.© 2014 International Union of Crystallography.
- ItemObservations of temperature stability of γ-zirconium hydride by high-resolution neutron powder diffraction(Elsevier, 2016-03-15) Wang, ZY; Steuwer, A; Liu, N; Maimaitiyili, T; Avdeev, M; Blomqvist, J; Bjerkén, C; Curfs, C; Kimpton, JA; Daniels, JEThe phase evolution in a zirconium–50 deuterium (Zr–50D, at.%) alloy system during thermal cycling has been investigated using in situ high-resolution neutron powder diffraction. The results showed that the peritectoid reaction α-Zr + δ-ZrD → γ-ZrD previously suggested to occur at high temperatures does not take place in the system. Slow cooling, from high temperatures (≥520 K) to room temperature at a rate of 5 K min−1, promoted the γ-hydride formation rather than fast cooling as reported earlier. In contrast to the observation that the δ-hydride present in the system remained at temperatures up to 740 K, the produced γ phase transformed to δ-hydride in the temperature range of 370 K–559 K, with the transformation completing at approximately 559 K. It is confirmed that the formation of the γ-hydride was reproducible with slow cooling, and a diffusion-controlled sluggish δ-to γ-hydride transformation is suggested to be responsible for the favorable development of γ-hydride during slow cooling. © 2015 Elsevier B.V.
- ItemObservations on the zirconium hydride precipitation and distribution in zircaloy-4(Springer Link, 2014-05-14) Wang, ZY; Garbe, U; Li, HJ; Harrison, RP; Kaestner, A; Lehmann, EHHydride precipitation and distribution in hot-rolled and annealed Zircaloy-4 plate samples artificially induced by gaseous hydrogen charging were studied primarily by neutron tomography, scanning electron microscopy (SEM), and SEM-based electron backscattered diffraction techniques. The precipitated hydride platelet (d-ZrH1.66) at a hydrogen pressure of 20 atm was found following the {111}d-ZrH1.66//(0001)a-Zr with the surrounding a-Zr matrix. The microstructural characterization indicated that hydrides with a relatively uniform distribution were precipitated on the rolling-transverse section of the plate, whereas, on the normal-transverse section, a hydride concentration gradient was present with a dense hydride layer near the surface. Further, the neutron tomography investigations clearly identified the nonuniform spatial distribution of hydrides. Thin hydride layers preferentially formed on the sample surface, and the concentrated hydrides precipitating at the edges/corner of the sample were observed. The causes for the localized hydride accumulation werealso discussed. © 2014, The Minerals, Metals & Materials Society and ASM International 2013.
- ItemOn the development of pseudo-eutectic AlCoCrFeNi2.1 high entropy alloy using Powder-bed Arc Additive Manufacturing (PAAM) process(Elsevier, 2021-01-20) Dong, BS; Wang, ZY; Pan, ZX; Muránsky, O; Shen, C; Reid, M; Wu, BT; Chen, XZ; Li, HJA new Powder-bed Arc Additive Manufacturing (PAAM) processing which includes on-line remelting of deposited material has been developed for the manufacturing of high entropy alloys (HEAs) based on an existing AlCoCrFeNi2.1 pseudo-eutectic system. The remelting process is typically applied in the arc melting process to improve the homogeneity of prepared material. We investigated the microstructure and mechanical properties of produced AlCoCrFeNi2.1 HEA after applying a remelting process (1, 3, and 6 times) on each deposited layer. The results show the formation of the pseudo-eutectic microstructure, which consists of relatively large columnar grains of the dominant FCC phase (~90 wt%) and fine dendritic grains of the minor BCC phase (~10 wt%). The applied layer-remelting process shows negligible effects on the phase fractions and their compositions, however, it significantly degraded the tensile strength and ductility of prepared alloys. Particularly, the ductility of the alloy reduced dramatically from about 27% after one time layer-remelting to only about 3% after 3 times layer-remelting. This is rationalised by the significant localisation of thermally induced plasticity caused by repeated remelting of deposited material. We also show that this thermally induced plasticity leads to an increased amount of local misorientation in both constitute phases, which suggests an increased amount of stored dislocations in the microstructure. Despite the potentially strain hardening due to this accumulation of the thermally induced plasticity, the appreciable growth and constrained dendritic morphology of BCC grains that developed after remelting play a prevailing role on the materials strength, which limit the interfacial strengthening of the eutectic microstructure and consequently result in the loss of the tensile strength. The obtained results will assist in the further development and microstructure optimisation of novel HEAs using powder-based additive manufacturing processes. © 2021 Elsevier B.V.
- ItemOn the effect of heat input and interpass temperature on the performance of Inconel 625 alloy deposited using wire arc additive manufacturing–cold metal transfer process(MDPI, 2021-12-25) Zhang, CX; Qiu, ZJ; Zhu, HL; Wang, ZY; Muránsky, O; Ionescu, M; Pan, ZX; Xi, JT; Li, HJRelatively high heat input and heat accumulation are treated as critical challenges to affect the qualities and performances of components fabricated by wire arc additive manufacturing (WAAM). In this study, various heat inputs, namely 276, 552 and 828 J/mm, were performed to fabricate three thin-wall Inconel 625 structures by cold metal transfer (CMT)-based WAAM, respectively, and active interpass cooling was conducted to limit heat accumulation. The macrostructure, microstructure and mechanical properties of the produced components by CMT were investigated. It was found that the increased heat input can deteriorate surface roughness, and the size of dendrite arm spacing increases with increasing heat input, thus leading to the deterioration of mechanical properties. Lower heat input and application of active interpass cooling can be an effective method to refine microstructure and reduce anisotropy. This study enhances the understanding of interpass temperature control and the effectiveness of heat inputs for Inconel 625 alloy by WAAM. It also provides a valuable in situ process for microstructure and mechanical properties’ refinement of WAAM-fabricated alloys and the control of heat accumulation for the fabrication of large-sized structures for future practical applications. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
- ItemOn the microstructure and high-temperature stability of nano-grained Zircaloy-4(Elsevier, 2022-03-15) Chen, L; Wang, ZY; Zhu, HL; Burr, PA; Qu, JT; Huang, Y; Balogh, L; Preuss, M; Muránsky, OA nano-grained microstructure of an α-Zr alloy (Zircaloy-4) was produced by high-pressure torsion, which shows evidence of a metastable ω-Zr phase, rather than β-Zr, determined by combining synchrotron X-ray diffraction and detailed electron microscopy observations. The ω-Zr phase is retained at ambient conditions and shows a new orientation relationship of [1011]α // [1100]ω and (1011)α // (1120)ω with the α-Zr matrix but is thermally unstable, fully reverting back to α-Zr phase upon heating above 350 °C. © 2021 Acta Materialia Inc. Published by Elsevier Ltd.
- ItemSolving key challenges in battery research using in situ synchrotron and neutron techniques(John Wiley & Sons, Inc, 2017-03-17) Gu, QF; Kimpton, JA; Brand, HEA; Wang, ZY; Chou, SLUnderstanding the electrochemical reaction mechanisms and kinetics in batteries is the key challenge for developing breakthroughs with new or existing electrode materials. X-rays and neutrons are excellent probes for studying atomic structure changes and phase evolution in battery materials during charge and discharge. Synchrotron X-ray powder diffraction (SXPD), with its high angular resolution and beam intensity, allows fast scattering and diffraction data collection to record crystalline structure changes that occur on short time-scales. Neutron powder diffraction (NPD) provides complementary information that is sensitive to different structural details during charge/discharge. More recently X-ray absorption spectroscopy (XAS) has been used to identify the oxidation states of transition metal ions present in new cathode compositions at different stages of battery cycling. Using in-house designed battery cells, electrodes or other cell components can be subjected to conditions designed to mimic their real operating conditions. It is preferable to investigate battery materials in operation to identify any critical intermediate stages during charge/discharge rather than using ex situ methods to analyse dismantled batteries. Examples and combinations of SXPD, XAS, and NPD measurements, which have been used to investigate lithium ion batteries and sodium ion batteries, are described and reviewed in this contribution. © 2017 Wiley-VCH Verlag GmbH & Co