Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wang, XX"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Water-mediated super-correlated proton-assisted transport mode for solid-state K−O2 batteries
    (Elsevier, 2024-09) Kong, DC; Avdeev, M; Song, LN; Zhen, LJ; Wang, XX; Xu, JJ
    A comprehensive understanding of the behavior nature of fast ions at the atomic level is essential for the development of advanced solid-state ionic conductors. The inadequate inter-ion correlation effects of current ion transport models lead to a conductivity bottleneck in designing conductors. Herein, based on water-mediated proton-assisted ion transport, a novel transport mode with simultaneous anion-cation and inter-cation coupling is designed, enabling the K-ions of the modeled solid-state ionic conductor K2Fe4O7 crystals to achieve an ultra-high conductivity of 7.6 × 10–2 S cm–1, an enhancement of two orders of magnitude. The principle of the accelerated K-ion diffusion through the rotation and vibration of water molecules around the framework oxygen atom is elaborated, and the coupling correlation between proton and K-ion transport is confirmed using in-situ impedance spectroscopy under labeled isotopes. The application of this mechanism enabled the fabricated K−O2 solid-state battery exhibit an ultra-low overpotential (0.1 V) and excellent rate performance. Further, the mechanism is also applicable for Li and Na-ion conductors, providing significant theoretical guidance for breaking existing universal design rules and for the development for faster ionic conductors. © 2024 Elsevier B.V.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback