Browsing by Author "Wang, YH"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemEffect of silicon on the distribution and speciation of uranium in sunflower (Helianthus annuus)(Elsevier, 2024-10) Wang, LL; Laing, Y; Liu, S; Chen, F; Wang, JG; Chen, YL; Paterson, DJ; Kopittke, PM; Wang, YH; Liu, C; Ye, YSunflower (Helianthus annuus) can potentially be used for uranium (U) phytoremediation. However, the factors influencing the absorption of U and its subsequent distribution within plant tissues remain unclear, including the effect of silicon (Si) which is known to increase metal tolerance. Here, using hydroponics, the effect of Si on the distribution and speciation of U in sunflower was examined using synchrotron-based X–ray fluorescence and fluorescence-X-ray absorption near-edge spectroscopy. It was found that ∼88 % of U accumulates within the root regardless of treatments. Without the addition of Si, most of the U appeared to bind to epidermis within the roots, whereas in the leaves, U primarily accumulated in the veins. The addition of Si alleviated U phytotoxicity and decreased U concentration in sunflower by an average of 60 %. In the roots, Si enhanced U distribution in cell walls and impeded its entry into cells, likely due to increased callose deposition. In the leaves, Si induced the sequestration of U in trichomes. However, Si did not alter U speciation and U remained in the hexavalent form. These results provide information on U accumulation and distribution within sunflower, and suggest that Si could enhance plant growth under high U stress. © 2024 Elsevier B.V.
- ItemStructural distortion and dielectric permittivities of KCoO2-type layered nitrides Ca1–xSrxTiN2(American Chemical Society, 2020-07-03) Lu, SL; Wang, YH; Lu, FQ; Feng, J; Lin, K; Xu, DM; Avdeev, M; Liu, LJ; Kuang, XJ; Xing, XRAmong the KCoO2-type phases, the orthorhombic layered nitride CaTiN2 is a newly reported high dielectric permittivity material (εr ∼ 1300–2500 within 104–106 Hz from 80 to 450 K) while the tetragonal SrTiN2 is reported to display an unintentional metallic conduction property. In this work, a Ca1–xSrxTiN2 solid solution was synthesized, in which the insulating SrTiN2 end member and some Sr-doped CaTiN2 samples were successfully obtained, and therefore, the dielectric properties of the Ca1–xSrxTiN2 solid solution were investigated. The Sr substitution for Ca drove an orthorhombic-to-tetragonal phase transformation in Ca1–xSrxTiN2, which reduced the dielectric permittivity significantly. The tetragonal SrTiN2 displays a much lower dielectric permittivity (εr ∼ 20–70 in 105–106 Hz and 10–300 K) than that of CaTiN2. The comparison on the dielectric permittivities and structures of CaTiN2 and SrTiN2 indicates that the structural distortion arising from the splitting of N planes between Ti layers within the TiN2 pyramidal layers could be a plausible structural origin of the high bulk dielectric permittivity of CaTiN2. © 2020 American Chemical Society
- ItemTranslocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves(Frontiers, 2022-03-02) Li, C; Wang, LL; Wu, J; Blamey, FPC; Wang, N; Chen, YL; Ye, Y; Wang, L; Paterson, DJ; Read, TL; Wang, P; Lombi, E; Wang, YH; Kopittke, PMFoliar zinc (Zn) fertilization is an important approach for overcoming crop Zn deficiency, yet little is known regarding the subsequent translocation of this foliar-applied Zn. Using synchrotron-based X-ray fluorescence microscopy (XFM) and transcriptome analysis, the present study examined the translocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves. Although bulk analyses showed that there had been minimal translocation of the absorbed Zn out of the leaf within 7 days, in situ analyses showed that the distribution of Zn in the leaf had changed with time. Specifically, when Zn was applied to the leaf for 0.5 h and then removed, Zn primarily accumulated within the upper and lower epidermal layers (when examined after 3 h), but when examined after 24 h, the Zn had moved to the vascular tissues. Transcriptome analyses identified a range of genes involved in stress response, cell wall reinforcement, and binding that were initially upregulated following foliar Zn application, whereas they were downregulated after 24 h. These observations suggest that foliar Zn application caused rapid stress to the leaf, with the initial Zn accumulation in the epidermis as a detoxification strategy, but once this stress decreased, Zn was then moved to the vascular tissues. Overall, this study has shown that despite foliar Zn application causing rapid stress to the leaf and that most of the Zn stayed within the leaf over 7 days, the distribution of Zn in the leaf had changed, with Zn mostly located in the vascular tissues 24 h after the Zn had been applied. Not only do the data presented herein provide new insight for improving the efficiency of foliar Zn fertilizers, but our approach of combining XFM with a transcriptome methodological system provides a novel approach for the study of element translocation in plants. © 2022 Li, Wang, Wu, Blamey, Wang, Chen, Ye, Wang, Paterson, Read, Wang, Lombi, Wang and Kopittke. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.