Browsing by Author "Wang, P"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemHot carrier transfer processes in nonstoichiometric titanium hydride(IOP Publishing, 2017-07-25) Wang, P; Iles, GN; Mole, RA; Yu, DH; Wen, X; Aguey-Zinsou, KF; Shrestha, SK; Conibeer, GThe absorber of the hot carrier solar cell (HCSC) needs to have a considerably reduced hot carrier thermalisation rate, in order to maintain the photo-generated hot carriers for enough time such that they can be extracted. The slow carrier cooling effect is predicted in materials in which the phononic band gap is sufficiently large to block the Klemens decay. Binary compounds with a large mass ratio between the constituent elements are likely to have large phononic band gap. Titanium hydride is one of these binary compounds that has the potential to become an absorber of the HCSC. Whilst a large phononic gap has been observed in stoichiometric TiH2, it has not been experimentally confirmed for hydrogen deficient TiH x (where x < 2). In this article, we report the phonon density of states of TiH1.65 measured using inelastic neutron scattering and presented to clearly show the phononic band gap. We also present the carrier thermalisation process of a TiH x (1< x <2) thin film by transient absorption, and estimate the carrier cooling time in this material. © 2017 The Japan Society of Applied Physics.
- ItemStructure and dynamics in photovoltaic metal hydrides(Australian Institute of Physics, 2018-01-30) Chea, K; Greaves, TL; Le, T; Rule, KC; Mole, RA; Wang, P; Shrestha, SK; Conibeer, G; Iles, GNSolar cell technology is an active area of research with the quest to improve the efficiency of solar cells to above the current value of 44%. Hot carrier solar cells are particular types of cells which may enable higher efficiencies to be obtained. However, these are only feasible where there is a sufficiently large band gap in the phonon dispersion of the bulk material to minimise energy loss to thermalisation, thus keeping the electrons ‘hot’. Binary compounds with a large mass difference between the two constituent atoms, and high level of crystal symmetry such as titanium hydride, can have such a gap in their phonon dispersion. Titanium hydride is an interesting photovoltaic material with a broad range of properties, which vary depending on the proportion of hydride present. Theoretical studies show TiH2 has a phonon band gap of 95 meV in the bulk phase, however, experimentally this compound exists as a powder because the hydrogenation process causes large stresses in the lattice which are strong enough to crack the bulk sample. For solar cell absorber materials, a bulk sample is preferred and these can be manufactured by hydrogenating very pure Ti metal. We have previously studied TiH1.65 using X-ray powder diffraction and inelastic neutron scattering and found that while the width of the acoustic and optical phonon bands is different from those of TiH2, it did have a phonon band gap of 65 meV i.e. large enough to block Klemens’ decay. We present here an extension of this work with Fourier Transform Infra-red (FTIR) and Raman spectroscopy, along with X-Ray Diffraction (XRD) data from the photovoltaic materials, TiH2 and ZrH2.
- ItemTranslocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves(Frontiers, 2022-03-02) Li, C; Wang, LL; Wu, J; Blamey, FPC; Wang, N; Chen, YL; Ye, Y; Wang, L; Paterson, DJ; Read, TL; Wang, P; Lombi, E; Wang, YH; Kopittke, PMFoliar zinc (Zn) fertilization is an important approach for overcoming crop Zn deficiency, yet little is known regarding the subsequent translocation of this foliar-applied Zn. Using synchrotron-based X-ray fluorescence microscopy (XFM) and transcriptome analysis, the present study examined the translocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves. Although bulk analyses showed that there had been minimal translocation of the absorbed Zn out of the leaf within 7 days, in situ analyses showed that the distribution of Zn in the leaf had changed with time. Specifically, when Zn was applied to the leaf for 0.5 h and then removed, Zn primarily accumulated within the upper and lower epidermal layers (when examined after 3 h), but when examined after 24 h, the Zn had moved to the vascular tissues. Transcriptome analyses identified a range of genes involved in stress response, cell wall reinforcement, and binding that were initially upregulated following foliar Zn application, whereas they were downregulated after 24 h. These observations suggest that foliar Zn application caused rapid stress to the leaf, with the initial Zn accumulation in the epidermis as a detoxification strategy, but once this stress decreased, Zn was then moved to the vascular tissues. Overall, this study has shown that despite foliar Zn application causing rapid stress to the leaf and that most of the Zn stayed within the leaf over 7 days, the distribution of Zn in the leaf had changed, with Zn mostly located in the vascular tissues 24 h after the Zn had been applied. Not only do the data presented herein provide new insight for improving the efficiency of foliar Zn fertilizers, but our approach of combining XFM with a transcriptome methodological system provides a novel approach for the study of element translocation in plants. © 2022 Li, Wang, Wu, Blamey, Wang, Chen, Ye, Wang, Paterson, Read, Wang, Lombi, Wang and Kopittke. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
- ItemWater absorption and transport in bis-silane films(Royal Society of Chemistry, 2009-01-07) Wang, YM; Wang, P; Kohls, D; Hamilton, WA; Schaefer, DWWater (D2O) ingress in bis-amino silane and bis-sulfur silane films was studied by in situ neutron reflectivity. Bis-amino silane film absorbs substantially more D2O (33 vol%) than the bis-sulfur silane film (4.6 vol%) at equilibrium. The volume increase (swelling) of both films, however, is much smaller than the total volume of D2O absorbed in the films. The results suggest that the absorbed water exists in two populations: one is dissolved in the polymer matrix (Henry's mode) while the other occupies unrelaxed free volume existing in the polymer (Langmuir mode). The dominance of Langmuir mode accounts for the small film thickness change during the water absorption. Dual-mode sorption is also consistent with the observed two-stage swelling process whereby an initial rapid increase in film thickness is followed by a slower process extending over 11 h. © 2009, Royal Society of Chemistry