Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Waldeck, K"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Preclinical characterization of 18FD-FPHCys, a new amino acid-based PET tracer
    (Springer, 2012-04-01) Denoyer, D; Kirby, L; Waldeck, K; Roselt, P; Neels, OC; Bourdier, T; Shepherd, R; Katsifis, A; Hicks, RJ
    The imaging potential of a new F-18-labelled methionine derivative, S-(3-[F-18]fluoropropyl)-d-homocysteine (F-18-D-FPHCys), and its selectivity for amino acid transporter subtypes were investigated in vitro and by imaging of human tumour xenografts. Expression of members of the system L (LAT isoforms 1-4 and 4F2hc) and ASCT (ASCT isoforms 1 and 2) amino acid transporter subclasses were assessed by quantitative real-time PCR in four human tumour models, including A431 squamous cell carcinoma, PC3 prostate cancer, and Colo 205 and HT-29 colorectal cancer lines. The first investigations for the characterization of F-18-D-FPHCys were in vitro uptake studies by comparing it with [1-C-14]-l-methionine (C-14-MET) and in vivo by PET imaging. In addition, the specific involvement of LAT1 transporters in F-18-D-FPHCys accumulation was tested by silencing LAT1 mRNA transcription with siRNAs. To determine the proliferative activity in tumour xenografts ex vivo, Ki-67 staining was used as a biomarker. A431 cells showed the highest F-18-D-FPHCys uptake in vitro and in vivo followed by Colo 205, PC3 and HT-29. A similar pattern of retention was observed with C-14-MET. F-18-D-FPHCys retention was strongly correlated with LAT1 expression both in vitro (R (2) = 0.85) and in vivo (R (2) = 0.99). Downregulation of LAT1 by siRNA inhibited F-18-D-FPHCys uptake, demonstrating a clear dependence on this transporter for tumour uptake. Furthermore, F-18-D-FPHCys accumulation mirrored cellular proliferation. The favourable properties of F-18-D-FPHCys make this tracer a promising imaging probe for detection of tumours as well as for the noninvasive evaluation and monitoring of tumour growth.© 2012, Springer.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback