Browsing by Author "Vizkelethy, G"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCharge collection efficiency degradation induced by MeV ions in semiconductor devices: model and experiment(Elsvier, 2016-01-01) Vittone, E; Pastuovic, Z; Breese, M; Garcia Lopez, J; Jakšić, M; Raisanen, J; Siegele, R; Simon, A; Vizkelethy, GThis paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials. © 2016 Elsevier B.V.
- ItemDeveloping electronic devices capable of withstanding harsh radiation(2013-05-13) Pastuovic, Z; Vittone, E; Siegele, R; Capan, I; Vizkelethy, G; Cohen, DD; Jakšić, MStudies performed by Zeljko Pastuovic at ANSTO’s microprobe facility, in collaboration with a team of international researchers, are helping to understand, model and predict the detrimental influence of ionising radiation on semiconducting materials required in millions of electronic devices. The research aims to develop materials and devices that are able to better withstand the damaging effects of high energy particles present in harsh radiation environments, such as solar cells, and power satellites in space, as well as materials used in high-energy physics and accelerators. These studies will help semiconductor, aerospace and other industries to better understand and extend the life of electronic devices.