Browsing by Author "Vergés, A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemConvictfish on the move: variation in growth and trophic niche space along a latitudinal gradient(Oxford Academic, 2019-06-30) Miranda, T; Smith, JA; Suthers, IM; Mazumder, D; Cruz, DO; Schilling, HT; Searle, K; Vergés, AThe range expansion of tropical fish into temperate waters is increasing markedly in response to climate change. Range-expanding fish encounter novel diets and environments, but we know little about how these conditions facilitate or hinder distribution shifts. Here, we quantified relative growth rate, morphometric condition and trophic niche of juvenile Acanthurus triostegus, a dominant range-expanding tropical surgeonfish, at four locations across 10° of latitude off eastern Australia. We related these metrics to differences in temperature and nutritional quality of dominant seaweeds and the epilithic algal matrix. Temperate food sources were richer in nitrogen than tropical diets. Stable isotope analysis (δ13 carbon and δ15 nitrogen) of fish muscle revealed a large trophic niche breadth at the highest latitude indicating a generalist foraging strategy, and more nitrogen-enriched isotopic signatures compared to tropical regions. Fish length was strongly correlated to δ13C in all regions, suggesting an ontogenetic shift in diet independent of latitude. Despite temperature differences of 4°C, fish growth and body condition were similar across tropical and temperate regions. These results suggest that more nutritious temperate diets may compensate for the effects of cooler water temperatures. Neither summer water temperatures nor dietary factors appear to limit the success of juvenile tropical vagrants as they continue to expand their range along eastern Australia. © 2019 ICES/CIEM
- ItemNatural and regenerated saltmarshes exhibit similar soil and belowground organic carbon stocks, root production and soil respiration(Springer Nature Limited, 2019-04-10) Santini, NS; Lovelock, CE; Hua, Q; Zawadzki, A; Mazumder, D; Mercer, TR; Muñoz-Rojas, A; Hardwick, SA; Madala, BS; Cornwell, W; Thomas, T; Marzinelli, EM; Adam, P; Paul, S; Vergés, ASaltmarshes provide many valuable ecosystem services including storage of a large amount of ‘blue carbon’ within their soils. To date, up to 50% of the world’s saltmarshes have been lost or severely degraded primarily due to a variety of anthropogenic pressures. Previous efforts have aimed to restore saltmarshes and their ecosystem functions, but the success of these efforts is rarely evaluated. To fill this gap, we used a range of metrics, including organic carbon stocks, root production, soil respiration and microbial communities to compare natural and a 20-year restoration effort in saltmarsh habitats within the Sydney Olympic Park in New South Wales, Australia. We addressed four main questions: (1) Have above- and belowground plant biomass recovered to natural levels? (2) Have organic carbon stocks of soils recovered? (3) Are microbial communities similar between natural and regenerated saltmarshes? and (4) Are microbial communities at both habitats associated to ecosystem characteristics? For both soil organic carbon stocks and belowground biomass, we found no significant differences between natural and regenerated habitats (F(1,14) = 0.47, p = 0.5; F(1,42) = 0.08, p = 0.76). Aboveground biomass was higher in the natural habitat compared to the regenerated habitat (F(1,20) = 27.3, p < 0.0001), which may result from a site-specific effect: protection from erosion offered by a fringing mangrove forest in the natural habitat but not the regenerated habitat. Our microbial community assessment indicated that restored and natural saltmarsh habitats were similar at a phylum level, with the exception of a higher proportion of Proteobacteria in the rhizosphere of saltmarshes from the regenerated habitat (p < 0.01). Abundance of both Desulfuromonas and Geobacter was associated with high carbon and nitrogen densities in soils indicating that these genera may be key for the recovery of ecosystem characteristics in saltmarshes. Our restored and natural saltmarsh soils store at 30 cm depth similar levels of organic carbon: 47.9 Mg OC ha−1 to 64.6 Mg OC ha−1. Conservation of urban saltmarshes could be important for ‘blue carbon’ programmes aimed at mitigating atmospheric carbon dioxide. © 2019 Springer Science+Business Media, LLC, part of Springer Nature