Browsing by Author "Uthayakumaran, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffect of acid dextrinisation on enzyme-resistant starch content in extruded maize starch(Elsevier, 2010-05) Htoon, AK; Uthayakumaran, S; Piyasiri, U; Appelqvist, IAM; Lopez-Rubio, A; Gilbert, EP; Mulder, RJThe enzyme-resistant starch (ERS) content in processed high amylose and regular maize starches has been studied, with and without acid dextrinisation. The physicochemical and structural characteristics of the starches were analysed using a variety of techniques. The increase in ERS in high amylose maize starch with dextrinisation was related to the formation of a critical molecular weight fraction (MW ~ 20,000) that could rearrange structurally. Further dextrinisation reduced the processed starch MW to below where it could still form ERS. Regular maize starch containing less than 30% amylose did not increase its resistance to amylase digestibility with acid dextrinisation, probably due to impairment of amylose rearrangement by the numerous branched amylopectin chains. The ERS, which is likely to form during the enzyme-digestion process, is a linear molecule with a maximum degree of polymerisation (DP) of 30, irrespective of the starch source, processing conditions applied or type and amount of acid used. © 2010, Elsevier Ltd.
- ItemInfluence of storage conditions on the structure, thermal behavior, and formation of enzyme-resistant starch in extruded starches(American Chemical Society, 2007-10-26) Chanvrier, H; Uthayakumaran, S; Appelqvist, IAM; Gidley, MJ; Gilbert, EP; Lopez-Rubio, AStarch structures from an extrusion process were stored at different temperatures to allow for molecular rearrangement (retrogradation); their thermal characteristics (DSC) and resistance to amylase digestion were measured and compared. The structure of four native and processed starches containing different amylose/amylopectin compositions (3.5, 30.8, 32, and 80% amylose content, respectively) before and after digestion was studied with small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). Rearrangement of the amylose molecules was observed for each storage condition as measured by the DSC endotherm at around 145°C. The crystalline organization of the starches after processing and storage was qualitatively different to that of the native starches. However, there was no direct correlation between the initial crystallinity and the amount of enzyme-resistant starch (ERS) measured after in vitro digestion, and only in the case of high-amylose starch did the postprocess conditioning used lead to a small increase in the amount of starch remaining after the enzymatic treatment. From the results obtained, it can be concluded that retrograded amylose is not directly correlated with ERS and alternative mechanisms must be responsible for ERS formation. © 2007, American Chemical Society