Browsing by Author "Tweed, CJ"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemComparative evaluation of surface complexation models for radionuclide uptake by diverse geologic materials(Elsevier, 2006-09) Payne, TE; Davis, JA; Ochs, M; Olin, M; Tweed, CJ; Altmann, S; Askarieh, MMThis chapter summaries a major international modelling exercise, co-ordinated by the OECD Nuclear Energy Agency, in which independent scientific teams applied thermodynamic sorption models (TSMs) to a number of experimental adsorption data sets. A wide variety of models was employed to simulate and predict the data. In all the test cases, reasonable, broadly similar TSM approaches were adopted, but based on wide diversity of assumptions and methods of parameter estimation. The models were able to realistically, and with some predictive power, simulate the experimental data for a range of substrates, radionuclides and chemical conditions. However, sorption modelling has not reached a stage approaching standardisation. Basic features such as the stoichiometry and structure of surface complexes and mathematical formulations for such model components as the EDL are subject to debate. In addition, key model input parameters such as site populations are not well defined (particularly for natural substrates). As a result, the numerical values of optimised model parameters are highly model- dependent, which means that, in the present study, it has not been meaningful to compare individual model parameters (such as log K values for surface complexes). If a consensus is reached on model components, and uniform modelling approaches are adopted, it will be appropriate to do such a comparison. Until that time, modellers need to recognise that model parameters can typically not be used directly in other models, but that they need to be scaled or re-fitted. Although the modelling strategies differed among the teams, all were guided by a single principle, representation of sorption in terms of mass action and mass balance laws. The generally satisfactory results of this intercomparison suggest that these types of models have inbuilt chemical plausibility and predictive capabililty. © 2006, Elsevier Ltd.
- ItemUse of thermodynamic sorption models to derive radionuclide Κd values for performance assessment: selected results and recommendations of the NEA sorption project(Oldenbourg Verlag, 2006-03) Ochs, M; Davis, JA; Olin, M; Payne, TE; Tweed, CJ; Askarieh, MM; Altmann, SFor the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (K-d values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of K-d for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive Kd as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. © 2006, Oldenbourg Verlag