Browsing by Author "Toppler, K"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAnalysis of compositionally ungraded FGM analogues: Neutron diffraction measurements of residual stress and mechanical testing of pressure sintered Mo-Y2O3 and Mo-Al2O3(Karlsruhe Institute of Technology, 2015-05) Saleh, M; Chavara, D; Toppler, K; Alexander, J; Ruys, AJ; Kaveh, K; Luzin, VFunctionally graded materials (FGMs) are a type of naturally inspired composite materials whose properties (e.g. microstructure, chemical or phase composition) vary over one or more dimensions. The FGMs were first proposed as an advanced engineering material in 1972 and research into application for Biomaterials, Aerospace, Chemical Plants, Mining, and Building material commodities[1, 2] is ever present. Within the nuclear industry FGMs can be engineered to effectively resist corrosion, radiation and are a potential choice for nuclear reactor components e.g. first wall for fusion reactors and fuel pellets. Additionally FGM’s have been proposed as potential plasma facing components (PFC) whereby the PFC would gradually vary from a refractory material (tungsten, plasma face) to a heat sink material (copper, coolant side). In the case of a metal-ceramic FGM, the composite mates the strength and ductility of a metal with the hardness and toughness of a ceramic [3-5]. The authors have sought to elucidate the development of residual stress in FGMs using neutron measurements on the Kowari Strain Scanner, ANSTO for the Mo-Y2O3 and Mo-Al2O3 system. Due to their extreme gradients FGM’s are not optimal for fast neutron measurements due to the high spatial resolution requirements and long measurement times. An alternative approach was employed to examine compositionally ungraded analogues of varying metal-ceramic ratios. All sample were manufactured using constituent powders, mixed and subsequently sintered using a hot press with close monitoring of the sintering curve. Optical microscopy and scanning electron microscopy were used to look at the resultant samples to observe the grain growth and the defect-like cracks attributable to the thermally induced stresses. Relaxation due to micro cracking and micro-fracturing are evaluated in light of the neutron residual stress measurements and mechanical strength measurements of : (a) bending stiffness using a three point bend tests, (b) bulk modulus through GrindoSonic techniques and (c) statistically averaged micro-hardness. Further evaluation of the residual stress is done through comparison between established analytical models, neutron diffraction and preliminary FEA. The major contribution of residual stress are further realised and evaluated in light of the interfacial instabilities present and the appropriate ways to optimise the thermal protection characteristics of a compositional gradient.
- ItemHydride precipitation and its influence on mechanical properties of notched and unnotched Zircaloy-4 plates(Elevier Science BV., 2013-05-01) Wang, Z; Garbe, U; Li, HJ; Harrison, RP; Toppler, K; Studer, AJ; Palmer, T; Planchenault, GThe hydride formation and its influence on the mechanical performance of hydrided Zircaloy-4 plates containing different hydrogen contents were studied at room temperature. For the unnotched plate samples with the hydrogen contents ranging from 25 to 850 wt. ppm, the hydrides exerted an insignificant effect on the tensile strength, while the ductility was severely degraded with increasing hydrogen content. The fracture mode and degree of embrittlement were strongly related to the hydrogen content. When the hydrogen content reached a level of 850 wt. ppm, the plate exhibited negligible ductility, resulting in almost completely brittle behavior. For the hydrided notched plate, the tensile stress concentration associated with the notch tip facilitated the hydride accumulation at the region near the notch tip and the premature crack propagation through the hydride fracture during hydriding. The final brittle through-thickness failure for this notched sample was mainly attributed to the formation of a continuous hydride network on the thickness section and the obtained very high hydrogen concentration (estimated to be 1965 wt. ppm). © 2013, Elsevier Ltd.
- ItemNeutron diffraction measurements of residual stress and mechanical testing of pressure sintered metal-ceramic composite systems(Materials Research Forum LLC., 2016-12-22) Toppler, K; Luzin, V; Saleh, M; Ruys, AJ; Kabir, K; Chavara, DTAbstract. Functionally graded materials (FGMs) are composite materials which vary in phase composition, microstructure and properties over one or more dimensions. They are a good potential choice for nuclear reactor components as they can be engineered to effectively resist corrosion and radiation damage. In the case of a metal-ceramic FGM, they can mate the strength and ductility of a metal with the hardness and toughness of a ceramic. A series of composite samples of variable metal-ceramic ratios was manufactured by hot uniaxial pressing in cylinders. Bulk uniform samples of a certain composition were manufactured as a more efficient way of studying FGMs without the extreme gradient required in practical applications. Thermally and mechanically generated stresses, inherent in composites, frequently create conditions for micro-cracking development, depending on the material’s micro-structural characteristics and the thermo-mechanical processing route. Bulk stress measurements in the prepared samples were carried out on the Kowari diffractometer on the OPAL reactor at ANSTO. Both phases – metal matrix and ceramic inclusions – were measured in both axial and lateral directions for full characterisation of the composite stress state. When compared against analytical evaluation, experimental results, for some samples, demonstrated significant stress relaxation with micro-cracking being the main suspect. Copyright © 2016 by the author(s)
- ItemResponse of thin-skinned sandwich panels to contact loading with flat-ended cylindrical punches: experiments, numerical simulations and neutron diffraction measurements(Elsevier, 2015-09-01) Saleh, M; Luzin, V; Toppler, K; Kabir, KThe response of aluminium foam-cored sandwich panels to localised contact loading was investigated experimentally and numerically using flat-ended cylindrical punch of four varying sizes. ALPORAS and ALULIGHT closed-cell foams of 15 mm thickness with 0.3 mm thick aluminium face sheets (of 236 MPa yield strength) were used to manufacture the sandwich panels. Face sheet fracturing at the perimeter of the indenter, in addition to foam cells collapse beneath the indenter and tearing of the cell walls at the perimeter of the indenter were the major failure mechanisms of the sandwich panels, irrespective of the strength and density of the underlying foam core. The authors employed a 3D model in ABAQUS/Explicit to evaluate the indentation event, the skin failure of the face sheets and carry out a sensitivity study of the panel's response. Using the foam model of Deshpande and Fleck combined with the forming limit diagram (FLD) of the aluminium face sheet, good quantitative and qualitative correlations between experiments and simulations were achieved. The higher plastic compliance of the ALPORAS led to increased bending of the sheet metal and delayed the onset of sheet necking and failure. ALULIGHT-cored panels exhibited higher load bearing and energy absorption capacity, compared with ALPORAS cores, due to their higher foam and cell densities and higher yield strength of the cell walls. Additionally, they exhibited greater propensity for strain hardening as evidenced by mechanical testing and the neutron diffraction measurements, which demonstrated the development of macroscopically measurable stresses at higher strains. At these conditions the ALULIGHT response upon compaction becomes akin to the response of bulk material with measurable elastic modulus and evident Poisson effect. Copyright © 2017 Elsevier B.V.