Browsing by Author "Tobin, MJ"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemCultural heritage project at Australian Nuclear Science and Technology Organisation (ANSTO)(Springer Nature, 2022-01-25) Salvemini, F; White, R; Levchenko, VA; Smith, AM; Pastuovic, Z; Stopic, A; Luzin, V; Tobin, MJ; Puskar, L; Howard, DL; Davis, J; Avdeev, M; Gatenby, S; Kim, MJ; Grazzi, F; Sheedy, K; Olsen, SR; Raymond, CA; Lord, C; Richards, C; Bevitt, JJ; Popelka-Filcoff, RS; Lenehan, CE; Ives, S; Dredge, P; Yip, A; Brookhouse, MT; Austin, AGThe Australian Nuclear Science and Technology Organization (ANSTO) is the home of Australia’s most significant landmark and national infrastructure for research. ANSTO operates one of the world’s most modern nuclear research reactors, OPAL; a comprehensive suite of neutron beam instruments; the Australian Synchrotron; the Electron Microscope Facility; and the Center for Accelerator Science. Over the years, the suite of nuclear methods available across ANSTO’s campuses has been increasingly applied to study a wide range of heritage materials. Since 2015 the strategic research project on cultural heritage was initiated in order to promote access to ANSTO’s capabilities and expertise, unique in the region, by cultural institution and researchers. This chapter offers a compendium of ANSTO nuclear capabilities most frequently applied to cultural heritage research. A series of innovative, interdisciplinary, and multi-technique studies conducted in close collaboration with Australian museums, institutions, and universities is also showcased. It includes research on dating Aboriginal Australian rock art and fingerprinting the sources of ochre pigments; rediscovering the technological knowledge in the making of early coinage and ancient weapons; virtually unwrapping the content of votive mummies from ancient Egypt; and investigating and restoring the original layer of a painting that can be explored by the museum audience in a novel type of exhibition based on an immersive, interactive, and virtual environment. © 2022 Springer Nature Switzerland AG
- ItemFemtosecond laser fabrication of diffractive optics for spatial and spectral imaging at synchrotron infrared beamlines(Society of Photo-Optical Instrumentation Engineers (SPIE), 2021-03-06) Anand, V; Katkus, T; Ng, SH; Vongsvivut, JP; Maksimovic, J; Klein, AR; Bambery, KR; Lundgaard, S; Linklater, D; Ivanova, EP; Tobin, MJ; Juodkazis, SInfrared (IR) microspectroscopy is a powerful molecular fingerprinting tool widely used for the identification of structural and functional composition of biological and chemical samples. The IR microspectroscopy beamline at the Australian Synchrotron can be operated either with a single-point narrow-band mercury cadmium telluride (MCT) detector or a focal plane array (FPA) imaging detector with 64 × 64 pixels. For the implementation of indirect nonscanning imaging technology, the system was operated with the FPA detector. In this study, we propose an indirect IR imaging technique based on the principles of correlation optics using diffractive optical elements such as random pinhole array (RPA) and Fresnel zone plate (FZP). The spatial and spectral variations of point spread functions (PSFs) of the RPA and FZP were simulated for the synchrotron configuration. Intensity responses for 2D objects were simulated using the same simulation conditions and reconstructed using Lucy-Richardson algorithm. Fabrication of diffractive elements for IR wavelengths is often a challenging task as the IR transparent material substrates, such as barium fluoride and calcium fluoride, are highly susceptible to thermal shocks and brittle by nature. The diffractive elements were fabricated by ablating directly on a 100 nm thick gold coated substrate using femtosecond laser pulses. The simulation results and the fabrication outcomes demonstrate the feasibility of indirect imaging at the synchrotron IR beamline. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
- ItemGrowth response of Escherichia coli bacterial cells on exposure to 1.25 Wm-2 synchrotron-sourced Terahertz radiation(Institute of Electrical and Electronics Engineers (IEEE), 2023-09-19) Vilagosh, Z; Nguyen, THPP; Perera, PGT; Linklater, D; Appadoo, D; Vingsvivut, JP; Tobin, MJ; Croft, R; Ivanova, EPThe growth of E. coli cells following low intensity 1.25 Wm−2 broadband synchrotron-sourced Terahertz (THz) radiation was monitored following serial exposures for 60 minutes with distinct samples at 10-minute intervals. After 20 minutes, E. coli cells showed a reduction to 53% compared to the control, and a minor fluctuation in colony forming units density followed by a major recovery to 80% at 60 minutes. © 2023 IEEE.
- ItemHigh-resolution macro ATR-FTIR chemical imaging capability at Australian Synchrotron Infrared Microspectroscopy (IRM) Beamline(Australian Nuclear Science and Technology Organisation, 2021-11-25) Vongsvivut, JP; Tobin, MJ; Klein, AR; Bambery, KRThis presentation aims to provide a summary on technical aspects and applications of our synchrotron macro ATR-FTIR microspectroscopy, unique to the Infrared Microspectroscopy (IRM) beamline at ANSTO–Australian Synchrotron.1 The device was developed by modifying the cantilever arm of a standard macro-ATR unit to accept Ge-ATR elements. Coupling synchrotron-IR beam to the Ge-ATR element (n=4), reduces the beam focus size by a factor of 4 (improving lateral resolution), and the mapping step size by 4 times relative to the stage step motion. As a result, the macro ATR-FTIR measurement at our IRM beamline can be performed at minimum projected aperture (sampling spot size) of 1-2 μm using a 20x objective, and minimum mapping step size of 250 nm, allowing high-resolution chemical imaging analysis with the resolution limit beyond those allowed for standard synchrotron-FTIR transmission and reflectance setups. The technique has facilitated many experiments in a diverse range of research disciplinary. Here, there will be presentations based on macro ATR-FTIR technique in archaeology, electrochemistry (battery), biomedical and forensic sciences. Apart from these, we will provide additional applications in the fields of food and pharmaceutical science,2-4 single-fibre analysis,5-6 and dentistry.7 References: [1] J. Vongsvivut, et al., Analyst 144, 10, 3226-323 (2019). [2] A.P. Pax, et al., Food Chemistry, 291, 214-222 (2019). [3] Y.P. Timilsena, et al., Food Chemistry, 275, 457-466 (2019). [4] D.M. Silva, et al., Journal of Colloid and Interface Science, 587, 499-509 (2021). [5] S. Nunna, et al., Journal of Materials Chemistry A, 5, 7372-7382 (2017). [6] C. Haynl, et al., Scientific Reports, 10, 17624 (2020). [7] P.V. Seredin, et al., International Journal of Molecular Sciences, 22, 6510 (2021). © 2021 The Authors
- ItemMechanisms of murine cerebral malaria: multimodal imaging of altered cerebral metabolism and protein oxidation at hemorrhage sites(American Association for the Advancement of Science, 2015-12-18) Hackett, MJ; Aitken, JB; El-Assaad, F; McQuillan, JA; Carter, EA; Ball, HJ; Tobin, MJ; Paterson, DJ; de Jonge, MD; Siegele, R; Cohen, DD; Vogt, S; Grau, GE; Hunt, NH; Lay, PAUsing a multimodal biospectroscopic approach, we settle several long-standing controversies over the molecular mechanisms that lead to brain damage in cerebral malaria, which is a major health concern in developing countries because of high levels of mortality and permanent brain damage. Our results provide the first conclusive evidence that important components of the pathology of cerebral malaria include peroxidative stress and protein oxidation within cerebellar gray matter, which are colocalized with elevated nonheme iron at the site of microhemorrhage. Such information could not be obtained previously from routine imaging methods, such as electron microscopy, fluorescence, and optical microscopy in combination with immunocytochemistry, or from bulk assays, where the level of spatial information is restricted to the minimum size of tissue that can be dissected. We describe the novel combination of chemical probe–free, multimodal imaging to quantify molecular markers of disturbed energy metabolism and peroxidative stress, which were used to provide new insights into understanding the pathogenesis of cerebral malaria. In addition to these mechanistic insights, the approach described acts as a template for the future use of multimodal biospectroscopy for understanding the molecular processes involved in a range of clinically important acute and chronic (neurodegenerative) brain diseases to improve treatment strategies. 2015 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution Non Commercial Licence 4.0 (CC BY-NC).
- ItemMicrometer-Scale 2D Mapping of the Composition and Homogeneity of Polymer Inclusion Membranes(CSIRO Publishing, 2011) St John, AM; Best, SP; Wang, YD; Tobin, MJ; Puskar, L; Siegele, R; Cattrall, RW; Kolev, SDA new method for determining variations in composition at the micrometer level of polymer inclusion membranes (PIMs) using synchrotron-based Fourier-transform infrared (FTIR) microspectrometry is described and used to investigate the relationship between PIM composition and the reproducibility of formation of optically clear, 'homogeneous' polymer membranes. Membranes based on Aliquat 336 and poly(vinyl chloride) (PVC), di(2-ethylhexyl) phosphoric acid and PVC, and Aliquat 336 and cellulose triacetate give highly reproducible PIMs with excellent optical properties which are chemically homogeneous on the micrometer scale. The close relationship between the spatial distribution of the extractant in the PIM and the extracted species was demonstrated by proton-induced X-ray emission microspectrometry (mu-PIXE) examination of chemically homogeneous membranes loaded with uranium. There is a high correlation between the homogeneity of the distributions of extracted uranium, polymer, and extractant, both on the surface of the PIM and over its cross-section. This approach provides a quantitative basis for the evaluation and optimization of PIMs and similar composite materials. © 2011, CSIRO Publishing
- ItemOrientation information added to IR hyperspectral imaging: silk and paracetamol(Society of Photo-Optical Instrumentation Engineers (SPIE), 2019-12-30) Ryu, M; Ng, SH; Vongsvivut, JP; Tobin, MJ; Morikawa, J; Juodkazis, SMalus (1809) and Beer-Lambert (1729) laws can be combined to separate birefringence and dichroism contributions in IR hyperspectral imaging. This is achieved by using two optically aligned polarisers for the highest transmittance. By rotation sample between the two aligned polarisers, spectra are taken at several angles for a better fit. This method is shown to resolve orientation of sub-diffraction patterns which are ~50 times smaller than the diffraction limit of 5:1 μm (at the wavelength 3.3 μm). Application potential for very different fields ranging from microscopy of bio- and pharmaceutical materials (silk and paracetamol) to satellite imaging of ocean waves with altimeter at K∝ band of 35.75 GHz or 8.39 cm wavelength will be discussed. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE).
- ItemResearch in art and archaeology: capabilities and investigations at the Australian Synchrotron(Taylor & Francis, 2019-11-26) Brand, HEA; Howard, DL; Huntley, J; Kappen, P; Masimenko, A; Paterson, DJ; Puskar, L; Tobin, MJIn the Australian Synchrotron's short history, we have made some important advances in instruments and capabilities that can be employed to study art and archaeology. In this article, we describe the capabilities at the Australian Synchrotron that are well-suited to investigating art, archaeology, and cultural heritage. We also present some case studies that demonstrate the breadth and impact of science that has been performed by researchers using these capabilities. Synchrotron radiation has many advantages that make it ideally suited to investigating art, archaeology and cultural heritage. The broad spectrum of radiation that can be employed and, in particular, the penetrating nature of the radiation at hard X-ray energies give the ability to conduct 3D reconstruction with tomography. In many cases, the techniques can be non-destructive and performed in situ. The intense infrared radiation allows infrared microscopy at diffraction-limited resolution and the recently developed attenuated total internal reflection mode can probe the surface of very delicate samples. In the following, we describe the relevant beamlines, their capabilities, and then illustrate with some key examples of research, from paleobotany to the investigation of paintings. © 2019 Informa UK Limited
- ItemSingle-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm(Institute of Optics and Electronics, Chinese Academy of Sciences, 2022-03-18) Anand, V; Han, Ml; Maksimovic, J; Ng, SH; Katkus, T; Klein, AR; Bambery, KR; Tobin, MJ; Vongsvivut, JP; Juodkazis, JIn recent years, there has been a significant transformation in the field of incoherent imaging with new possibilities of compressing three-dimensional (3D) information into a two-dimensional intensity distribution without two-beam interference (TBI). Most of the incoherent 3D imagers without TBI are based on scattering by a random phase mask exhibiting sharp autocorrelation and low cross-correlation along the depth. Consequently, during reconstruction, high lateral and axial resolutions are obtained. Imaging based on scattering requires an astronomical photon budget and is therefore precluded in many power-sensitive applications. In this study, a proof-of-concept 3D imaging method without TBI using deterministic fields has been demonstrated. A new reconstruction method called the Lucy-Richardson-Rosen algorithm has been developed for this imaging concept. We believe that the proposed approach will cause a paradigm-shift in the current state-of-the-art incoherent imaging, fluorescence microscopy, mid-infrared fingerprinting, astronomical imaging, and fast object recognition applications. © The Author(s) 2022. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License.
- ItemSpectroscopic analysis of age-related changes in the brain lateral ventricles during ageing(Australian Nuclear Science and Technology Organisation, 2021-11-24) Hollings, A; Hackett, MJ; Tobin, MJ; Klein, AR; Vongsvivut, JP; de Jonge, MD; Bone, S; Webb, S; Lam, V; Takechi, R; Mamo, JAlzheimer’s disease is the most common form of dementia and poses significant health and economic concerns. Currently, the disease has no cure, and it is expected that over 1 million people could be affected by 2058 in Australia alone. The content and distribution of metals such as Fe, Cu, Zn is known to change in the ageing brain and thus, increased understanding of the mechanistic role of metal dis-homeostasis may illuminate new therapeutic strategies. The brain lateral ventricles, which play a role in controlling metal and ion transport, have shown increasing levels of copper surrounding their walls with ageing. As a redox active metal, copper can induce oxidative stress which is a process that occurs during Alzheimer’s disease onset and progression. Our research group has been interested in determining whether the age-related elevation of copper surrounding the lateral ventricles is inducing oxidative stress in that region. In this study, we have utilised X-Ray Absorption Spectroscopy (XAS) at the Stanford Synchrotron Radiation Lightsource to analyse different chemical forms of sulfur and measure oxidative stress by analysis of disulfides. Additionally, we used the infrared microscopy beamline at the Australian Synchrotron to identify whether any other markers of oxidative stress were present around the ventricles. Further insights into metal dis-homeostasis and its influence on other biochemical pathways, may help to reveal some of the neurochemical mechanisms involved in progression of Alzheimer’s disease. In turn, this may help pave the way for potential preventative or therapeutic models.
- ItemSynchrotron infrared micro-spectroscopy of single cells at the Australian Synchrotron(Australian Microscopy and Microanalysis Society, 2016-02-04) Bambery, KR; Tobin, MJ; Puskar, L; Martin, D; Vongsvivut, JPInfrared Microspectroscopy is increasingly revealing valuable bio-chemical information of biological and biomedical systems beyond the tissue level at the single cell level. At the Australian Synchrotron Infrared Microscopy beamline, FTIR spectroscopy provides sensitive molecular fingerprinting for tissues and cells without the need for sample pre-treatment with stains or external markers. Due to the brightness of a synchrotron source, good signal to noise at high spatial resolution (diffraction limited) can routinely be performed at the single cell level. In the study of live microbiological systems the principal restriction on the application of infrared microspectroscopy is the strong absorbance by water in the region of 1650 cm-1, overlaying the Amide I absorption band of proteins. The combination of a highly focused synchrotron beam with liquid cells constructed with microfabricated spacers of 6 to 8 microns in thickness have enabled complete mid-IR spectra to be obtained of single live cells under aqueous media within short scan times. Some applications include analysis of spectral changes in normal single living cells, diagnosing different disease states, discrimination of cell types and monitoring the effects of drug treatment at the single cell level. Details of these studies conducted at the infrared microscopy beamline at the Australian Synchrotron are presented.
- ItemSynchrotron macro ATR-FTIR: where we are and what’s next for live-cell measurement(Australian Nuclear Science and Technology Organisation, 2020-11-19) Vongsvivut, JP; Pérez-Guaita, D; Nankervis, L; Massey, A; Ampt, C; McKinlay, J; Sandt, C; Tobin, MJThis presentation aims to provide a summary on the recent applications of our synchrotron macro ATR-FTIR microspectroscopy, unique to the Australian Synchrotron’s Infrared Microspectroscopy (IRM) beamline. The technique provides molecular information with sub-cellular resolution down to 1-2 m beyond the resolution limit allowed for standard synchrotron-FTIR setups and further simplifies otherwise complicated sample preparation [1]. Since the technique was made available for users in 2016, this high-resolution chemical mapping capability has facilitated diverse experiments on the beamline expanding its applications into many new areas. Some of the recent examples include novel environmental sustainable geopolymer concretes [2,3], archaeological bones [4] and spider silk cross-sections [5]. The second part of the presentation will highlight further development of the macro ATR-FTIR technique specifically for live-cell measurement in an aqueous environment. Through the collaboration with the SMIS beamline at SOLEIL (France), we undertook a beamtime experiment using their inverted ATR-FTIR accessory to acquire spectra from live red blood cells. The experience and knowledge gained from this international beamtime experiment, together with the effort from our mechanical engineering team, have resulted in an optical design to be developed into the first prototype of ATR-FTIR setup for live-cell measurement. References [1] J. Vongsvivut, D. Pérez-Guaita, B. R. Wood, P. Heraud, K. Khambatta, D. Hartnell, M. J. Hackett, and M. J. Tobin, “Synchrotron Macro ATR-FTIR Microspectroscopy for High-Resolution Chemical Mapping of Single Cells,” Analyst 144, 10, 3226-3238 (2019). [2] A. Hajimohammadi, T. Ngo, J. L. Provis, T. Kim, and J. Vongsvivut, “High Strength/Density Ratio in a Syntactic Foam Made from One-Part Mix Geopolymer and Cenospheres,” Composites Part B, 173, 106908 (2019). [3] A. Hajimohammadi, T. Ngo, and J. Vongsvivut, “Interfacial Chemistry of a Fly Ash Geopolymer and Aggregates,” Journal of Cleaner Production, 231, 980-989 (2019). [4] J. J. Miszkiewicz, C. Rider, S. Kealy, C. Vrahnas, N. A. Sims, J. Vongsvivut, M. J. Tobin, M. J. L. A. Bolunia, A. S. De Leon, A. L. Peñalosa, P. S. Pagulayan, A. V. Soriano, R. Page, and M. F. Oxenham, “Asymmetric Midshaft Femur Remodelling in an Adult Male with Left Sided Hip Joint Ankylosis, Metal Period Nagsabaran, Philippines,” International Journal of Palaeopathology, 31, 14 (2020). [5] C. Haynl, J. Vongsvivut, K. R. H. Mayer, H. Bargel, V. J. Neubauer, M. J. Tobin, M. A. Elgar, and T. Scheibel, “Dimensional Stability of a Remarkable Spider Foraging Web Achieved by Synergistic Arrangement of Silk Fibers,” accepted for publication in Scientific Reports (2020)
- ItemThree-dimensional phase imaging with near infrared synchrotron beam using phase-retrieval algorithm(Society of Photo-Optical Instrumentation Engineers (SPIE), 2023-03-08) Han, M; Smith, D; Ng, SH; Katkus, TA; Simon, A; Rajeswary, JF; Praveen, PA; Tobin, MJ; Vongsvivut, JP; Juodkazis, S; Anand, VThe near infrared (NIR) part of the infrared synchrotron beam is usually dumped to improve the signal to noise ratio of spectral imaging. In this study, this NIR synchrotron beam has been extracted and used for three-dimensional (3D) phase imaging. A pinhole was inserted in the path of the fork shaped NIR synchrotron beam and the Airy diffraction pattern was aligned with biochemical samples and the diffracted intensity distribution was captured using an image sensor sensitive to NIR. A phase retrieval algorithm was used to estimate the 3D phase distribution at the object plane from the recorded intensity distribution. © (2023) Society of Photo-Optical Instrumentation Engineers (SPIE)