Browsing by Author "Tinker, R"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAtmospheric transport modelling of time resolved 133Xe emissions from the isotope production facility ANSTO, Australia(Elsevier, 2013-12) Schöppner, M; Plastino, W; Hermanspahn, N; Hoffmann, EL; Kalinowski, M; Orr, B; Tinker, RThe verification of the Comprehensive Nuclear-Test Ban Treaty (CTBT) relies amongst other things on the continuous and worldwide monitoring of radioxenon. The characterization of the existing and legitimate background, which is produced mainly by nuclear power plants and isotope production facilities, is of high interest to improve the capabilities of the monitoring network. However, the emissions from legitimate sources can usually only be estimated. For this paper historic source terms of 133Xe emissions from the isotope production facility at ANSTO, Sydney, Australia, have been made available in a daily resolution. Based on these high resolution data, different source term sets with weekly, monthly and yearly time resolution have been compiled. These different sets are then applied together with atmospheric transport modelling (ATM) to predict the concentration time series at two radioxenon monitoring stations. The results are compared with each other in order to examine the improvement of the prediction capability depending on the used time resolution of the most dominant source term in the region. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.
- ItemEvaluation of radioxenon releases in Australia using atmospheric dispersion modelling tools.(Elsevier, 2010-05) Tinker, R; Orr, B; Grzechnik, M; Hoffmann, EL; Saey, P; Solomon, SThe origin of a series of atmospheric radioxenon events detected at the Comprehensive Test Ban Treaty Organisation (CTBTO) International Monitoring System site in Melbourne, Australia, between November 2008 and February 2009 was investigated. Backward tracking analyses indicated that the events were consistent with releases associated with hot commission testing of the Australian Nuclear Science Technology Organisation (ANSTO) radiopharmaceutical production facility in Sydney, Australia. Forward dispersion analyses were used to estimate release magnitudes and transport times. The estimated 133Xe release magnitude of the largest event (between 0.2 and 34 TBq over a 2 d window), was in close agreement with the stack emission releases estimated by the facility for this time period (between 0.5 and 2 TBq). Modelling of irradiation conditions and theoretical radioxenon emission rates were undertaken and provided further evidence that the Melbourne detections originated from this radiopharmaceutical production facility. These findings do not have public health implications. This is the first comprehensive study of atmospheric radioxenon measurements and releases in Australia. © 2010, Elsevier Ltd.
- ItemInfluence on the radioxenon background during the temporary suspension of operations of three major medical isotope production facilities in the Northern Hemisphere and during the start-up of another facility in the Southern Hemisphere(Elsevier, 2010-09) Saey, PRJ; Auer, M; Becker, A; Hoffmann, EL; Nikkinen, M; Ringbom, A; Tinker, R; Schlosser, C; Sonck, MMedical isotope production facilities (MIPF) have recently been identified to emit the major part of the environmental radioxenon measured at many globally distributed monitoring sites deployed to strengthen the radionuclide component of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification regime. Efforts to raise a global radioxenon emission inventory revealed that the yearly global total emission from MIPF’s is around 15 times higher than the total radioxenon emission from nuclear power plants (NPP's). Given that situation, from mid 2008 until early 2009 two out of the ordinary hemisphere-specific events occured: 1) In the Northern hemisphere, a joint temporary suspension of operations of the three largest MIPF's made it possible to quantify the effects of the emissions related to NPP’s. The average activity concentrations of 133Xe measured at a monitoring station close to Freiburg, Germany, went down significantly from 4.5 ± 0.5 mBq/m3 to 1.1 ± 0.1 mBq/m3 and in Stockholm, Sweden, from 2.0 ± 0.4 mBq/m3 to 1.05 ± 0.15 mBq/m3. 2) In the Southern hemisphere the only radioxenon-emitting MIPF in Australia started up test production in late November 2008. During eight test runs, up to 6.2 ± 0.2 mBq/m3 of 133Xe was measured at the station in Melbourne, 700 km south-west from the facility, where no radioxenon had been observed before, originating from the isotopic production process. This paper clearly confirms the hypothesis that medical isotope production facility are at present the major emitters of radioxenon to the atmosphere. Suspension of operations of these facilities indicates the scale of their normal contribution to the European radioxenon background, which decreased two to four fold. This also gives a unique opportunity to detect and investigate the influence of other local and long distance sources on the radioxenon background. Finally the opposing effect was studied: the contribution of the start-up of a renewed radiopharmaceutical facility to the build up of a radioxenon background across Australia and the Southern hemisphere. © 2010, Elsevier Ltd.
- ItemTo leave or not to leave: a tiered assessment of the impacts of scale residue from decommissioned offshore oil and gas infrastructure in Australia(ICRP, 2025-11-06) MacIntosh, A; Cresswell, T; Koppel, DJ; Hirth, GA; Tinker, R; Dafforn, KA; Chariton, AA; Penrose, B; Langendam, ADThere are a range of potential options for the decommissioning of offshore petroleum infrastructure, including: complete removal; removal of topside infrastructure with subsea infrastructure left in situ; or partial removal or modification of infrastructure. The current decommissioning liability in Australia is estimated to exceed US$40 billion over the next 50 years. This is founded on the base-case regulatory position of complete removal of all infrastructure, with over half the liability occurring in the next 10 years. In Australia, a recently updated decommissioning framework requires that the planning for decommissioning begins from the outset of the project, and plans are matured throughout the life of operations. Successful decommissioning of subsea oil and gas infrastructure requires an effective and safe approach for assessing and managing chemical and radiological residues. Naturally occurring radioactive materials (NORM) are ubiquitous in oil and gas reservoirs around the world and may form contamination products including scales and sludges in topside and subsea infrastructure. In situ decommissioning of infrastructure left in the marine environment has many ecological benefits including establishment of artificial reefs, economic benefits from associated fisheries, reduced costs and improved human safety outcomes. However, there may be ecological risks associated with leaving infrastructures in the marine environment that are not well understood. Following a scenario of in situ decommissioning of subsea petroleum infrastructure, marine organisms occupying the exteriors or interiors of production pipelines may have close contact with the scale (metal and radionuclide contaminants). Consequently, radio- and chemo-toxicological effects from the scale could occur respectively. This paper considers the current assessment process for NORM-contamination products in oil and gas systems, recent and emerging Australian research in marine radioecology. Here we demonstrate a tiered approach to assess the ecological impacts of pipeline scale related to decommissioning practices, and identifies key research priorities. This can further aid our understanding of the fate of NORM contaminates in subsea oil and gas systems and guide Australia-specific (expand to other petroleum operating countries) risk assessments for infrastructure decommissioning options. The creation of a tiered assessment will enable industry to optimise decommissioning solutions and allow regulators to set clearer expectations on the requirements for environmental protection.