Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tatsumi, K"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Synthesis and characterization of the crystal structure and magnetic properties of the new fluorophosphate LiNaCo[PO4]F
    (American Chemical Society, 2012-08-02) Ben Yahia, H; Shikano, M; Koike, S; Tatsumi, K; Kobayashi, H; Kawaji, H; Avdeev, M; Miiller, W; Ling, CD; Liu, J; Whangbo, MH
    The new compound LiNaCo[PO4]F was synthesized by a solid state reaction route, and its crystal structure was determined by single-crystal X-ray diffraction measurements. The magnetic properties of LiNaCo[PO4]F were characterized by magnetic susceptibility, specific heat, and neutron powder diffraction measurements and also by density functional calculations. LiNaCo[PO4]F crystallizes with orthorhombic symmetry, space group Pnma, with a = 10.9334(6), b = 6.2934(11), c = 11.3556(10) angstrom, and Z = 8. The structure consists of edge-sharing CoO4F2 octahedra forming CoFO3 chains running along the b axis. These chains are interlinked by PO4 tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The magnetic susceptibility follows the Curie Weiss behavior above 60 K with theta = -21 K. The specific heat and magnetization measurements show that LiNaCo[PO4]F undergoes a three-dimensional magnetic ordering at T-mag = 10.2(5) K. The neutron powder diffraction measurements at 3 K show that the spins in each CoFO3 chain along the b-direction are ferromagnetically coupled, while these FM chains are antiferromagnetically coupled along the a-direction but have a noncollinear arrangement along the c-direction. The noncollinear spin arrangement implies the presence of spin conflict along the c-direction. The observed magnetic structures are well explained by the spin exchange constants determined from density functional calculations. © 2012, American Chemical Society.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback