Browsing by Author "Tappin, DR"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemErosion, deposition and landscape change on the Sendai coastal plain, Japan, resulting from the March 11, 2011 Tohoku-oki tsunami(Elsevier B.V., 2020-12-12) Richmond, B; Szczuciński, W; Chagué-Goff, C; Goto, K; Sugawara, D; Witter, R; Tappin, DR; Jaffe, BE; Fujino, S; Nishimura, Y; Goff, JRCase studies of recent tsunami impacts have proven to be extremely useful in understanding the geologic processes involved during inundation and return flow, and refining the criteria used to identify paleotsunami deposits in the geologic record. Here, we report on erosion, deposition and associated landscape change resulting from the March 11, 2011 Tohoku-oki tsunami along a nearly 4.5 km shore-normal transect on the coastal plain near Sendai, Japan. The study area on the broad, low-relief prograding coastal Sendai plain comprised a sand beach backed by ~ 3 m high sand dunes and a forest, a wetland, the Teizan canal, agricultural rice fields, buildings and roads. Field observations focused on measurements of tsunami flow characteristics (height and direction), mapping of erosion features and assessing sediment deposition based on shallow trenches at 50–100 m spacing. Recorded tsunami inundation heights reached up to about 11 m above mean sea level within the first 500 m from the shoreline and then ranged between 3 and 5 m for the next 2 km, gradually decreasing to about 3 m close to the inundation limit. The tsunami deposit generally thinned landward from an average maximum ~ 30 cm thick sand deposit in the coastal forest to a thin mud drape several mm thick near the inundation limit. A discontinuous sand-dominated sheet was prevalent to about 2800 m from the shoreline where mud content then gradually increased further landward eventually resulting in a mud-dominated deposit ranging from 3.5 cm to a few mm thickness. The overall thinning and fining of the deposit was often interrupted by localized features that led to complex sedimentological relationships over short distances. Satellite imagery taken on 14 March 2011, 3 days after the Tohoku-oki Tsunami shows prominent foreshore incisions with 100 s + meters spacing alongshore, a foredune ridge that underwent severe erosion and development of a prominent shore-parallel elongated scour depression. Our field survey in early May 2011 revealed that the foreshore recovered quickly with rapid post-tsunami sediment deposition from incident waves, whereas the dune–ridge complex had undergone only minor re-working from eolian processes. © 2020 Elsevier B.V
- ItemField observations of erosion, deposition, and tsunami flow characteristics on the Sendai Coastal Plain after the March 2011, Tohoku-oki Tsunami, Japan(American Geophysical Union, 2011-11-05) Richmond, BM; Goto, K; Fujino, S; Nishimura, Y; Sugawara, D; Tappin, DR; Witter, RC; Jaffe, BE; Chagué-Goff, C; Szczuciński, W; Yulianto, E; Goff, JRHistorical and instrumental data show that the Pacific coast of Mexico has been exposed to destructive tsunamis over at least the past 500 years. This coast is also affected by hurricanes generated in the eastern Pacific. The great 1985 Mexico earthquake and its aftershock generated tsunamis that affected the Ixtapa-Zihuatanejo and Michoacán coast. The purpose of our study was two-fold, a) to determine whether we could distinguish storm from tsunami deposits, and b) whether tsunami deposits from historical events are preserved in the tropical environments of the Ixtapa-Zihuatanejo coast. Two anomalous sand units in the Ixtapa estuary are interpreted as the result of high-energy marine inundation events that occurred in the last century. Several lines of evidence using a multi-proxy approach (historical studies, interviews with local witnesses, geomorphological and geological surveys, coring and trenching, and laboratory analyses including grain size, micropaleontology, geochemistry, magnetic susceptibility and radiometric dating) indicate the occurrence of two tsunamis that we link to local events: the 1985 Mexico and possibly the 1979 Petatlan earthquakes. We thereby provide the first onshore geological evidence of historical tsunamis on the Pacific coast of Mexico. © American Geophysical Union
- ItemInitial field survey report of the 2011 East Japan Tsunami in Sendai, Natori adn Iwanuma Cities(UNESCO-IOC, 2011-07-10) Sugawara, D; Goto, K; Chagué-Goff, C; Fujino, S; Goff, JR; Jaffe, BE; Nishimura, Y; Richmond, B; Szczuciński, W; Tappin, DR; Witter, R; Yuliento, EThe East Japan Earthquake (Mw 9.0) and associated tsunami struck the Pacific coast of eastern Japan on March 11th, 2011 at 2:46 p.m. (Japan Standard Time). Maximum run-up heights reached about 40 m along the Sanriku region’s coast and around 10 m on the Sendai coastline. The coasts of Iwate, Miyagi and Fukushima Prefectures in particular were badly damaged, and a considerable amount of time and money will be required to restore these areas. Tsunami inundation up to 5 km inland occurred across the Sendai Plain, which remained partly flooded for several weeks after the event. Some areas were still under water 2 months after the earthquake, and are likely to remain flooded for some time as a result of subsidence. The Disaster Control Research Center at Tohoku University conducted scientific research of the inundated coastal plains of Sendai, Natori and Iwanuma Cities in collaboration with other research institutes from Japan and overseas with the support of UNESCO-IOC (Intergovernmental Oceanographic Commission). Data and samples collected during the field survey are now being analyzed by various institutes around the World. This report is a summary of our field survey that focused on an area to the north of Sendai Airport. Radioactivity data recorded at the time of survey are also provided.
- ItemNew insights of tsunami hazard from the 2011 Tohoku-oki event(Elsevier, 2011-12-01) Goto, K; Chagué-Goff, C; Fujino, S; Goff, JR; Jaffe, BE; Nishimura, Y; Richmond, B; Sugawara, D; Szczuciński, W; Tappin, DR; Witter, R; Yulianto, EWe report initial results from our recent field survey documenting the inundation and resultant deposits of the 2011 Tohoku-oki tsunami from Sendai Plain, Japan. The tsunami inundated up to 4.5 km inland but the >0.5 cm-thick sand deposit extended only 2.8 km (62% of the inundation distance). The deposit however continued as a mud layer to the inundation limit. The mud deposit contained high concentrations of water-leachable chloride and we conclude that geochemical markers and microfossil data may prove to be useful in identifying the maximum inundation limit of paleotsunamis that could extend well beyond any preserved sand layer. Our newly acquired data on the 2011 event suggest that previous estimates of paleotsunamis (e.g. 869 AD Jogan earthquake and tsunami) in this area have probably been underestimated. If the 2011 and 869 AD events are indeed comparable, the risk from these natural hazards in Japan is much greater than previously recognized. (c) 2011 Elsevier