Browsing by Author "Tang, F"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGiant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films(Springer Nature, 2021-12-01) Wang, ZC; Chen, L; Li, SS; Ying, JS; Tang, F; Gao, GY; Fang, Y; Zhao, WY; Cortie, DL; Wang, XL; Zheng, RKLinear magnetoresistance (LMR) is a special case of a magnetic-field induced resistivity response, which has been reported in highly disordered semiconductor systems and in topological materials. In this work, we observe LMR effect in half-metallic perovskite Sr2CrMoO6 thin films, of which the maximum MR value exceeds +1600% at 2 K and 14 T. It is an unusual behavior in ferrimagnetic double perovskite material like Sr2CrMoO6, which are known for intrinsic tunneling-type negative magnetoresistance. In the thin films, the high carriers’ density (~1022 cm−3) and ultrahigh mobility (~104 cm2 V−1 s−1) provide a low-resistivity (~10 nΩ·cm) platform for spin-polarized current. Our DFT calculations and magnetic measurements further support the half-metal band structure. The LMR effect in Sr2CrMoO6 could possibly originate from transport behavior that is governed by the guiding center motion of cyclotron orbitals, where the magnetic domain structure possibly provides disordered potential. The ultrahigh mobility and LMR in this system could broaden the applications of perovskites, and introduce more research on metallic oxide ferri-/ferro-magnetic materials. © The Author(s) 2021 - Open Access CC BY licence.
- ItemSpin reorientation transition and negative magnetoresistance in ferromagnetic NdCrSb3 single crystals(MDPI, 2023-02-20) Chen, L; Zhao, WY; Wang, ZC; Tang, F; Fang, Y; Zeng, Z; Xia, ZC; Cheng, ZX; Cortie, DL; Rule, KC; Wang, XL; Zheng, RKHigh-quality NdCrSb3 single crystals are grown using a Sn-flux method, for electronic transport and magnetic structure study. Ferromagnetic ordering of the Nd3+ and Cr3+ magnetic sublattices are observed at different temperatures and along different crystallographic axes. Due to the Dzyaloshinskii–Moriya interaction between the two magnetic sublattices, the Cr moments rotate from the b axis to the a axis upon cooling, resulting in a spin reorientation (SR) transition. The SR transition is reflected by the temperature-dependent magnetization curves, e.g., the Cr moments rotate from the b axis to the a axis with cooling from 20 to 9 K, leading to a decrease in the b-axis magnetization f and an increase in the a-axis magnetization. Our elastic neutron scattering along the a axis shows decreasing intensity of magnetic (300) peak upon cooling from 20 K, supporting the SR transition. Although the magnetization of two magnetic sublattices favours different crystallographic axes and shows significant anisotropy in magnetic and transport behaviours, their moments are all aligned to the field direction at sufficiently large fields (30 T). Moreover, the magnetic structure within the SR transition region is relatively fragile, which results in negative magnetoresistance by applying magnetic fields along either a or b axis. The metallic NdCrSb3 single crystal with two ferromagnetic sublattices is an ideal system to study the magnetic interactions, as well as their influences on the electronic transport properties. © 2023 The Authors, Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.