Browsing by Author "Tan, TT"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemImmobilization of Na ions for substantial power factor enhancement: site-specific defect engineering in Na0.8CoO2(American Chemical Society, 2012-02-16) Tsai, PH; Assadi, MHN; Zhang, T; Ulrich, C; Tan, TT; Donelson, R; Li, SSimultaneous enhancement of the interdependent Seebeck coefficient and electrical conductivity has been achieved through defect engineering by doping Mg into specific sites of Na0.8CoO2. Results from thermoelectric measurement demonstrate that the power factor was substantially increased by 50% at ambient. Experimental and theoretical analyses show that the occupation of divalent Mg in the disordered Na layer immobilizes the Na ions and thus induces a long-range ordering of Na ions. This phenomenon improves the carrier mobility significantly, giving rise to the observed exotic thermoelectric performance. Moreover, it is predicted that other electronically closed-shell dopants in sodium cobaltate play a similar role in enhancing the thermoelectric conversion efficiency. © 2012, American Chemical Society.
- ItemKey role of Bismuth in the magnetoelastic transitions of Ba3BiIr2O9 and Ba3BiRu2O9 as revealed by chemical doping(America Chemical Society, 2013-12-24) Blanchard, PER; Huang, ZX; Kennedy, BJ; Liu, S; Miiller, W; Reynolds, EM; Zhou, QD; Avdeev, M; Zhang, ZM; Aitken, JB; Cowie, BCC; Jang, LY; Tan, TT; Li, S; Ling, CDThe key role played by bismuth in an average intermediate oxidation state in the magnetoelastic spin-gap compounds Ba3BiRu2O9 and Ba3BiIr2O9 has been confirmed by systematically replacing bismuth with La3+ and Ce4+. Through a combination of powder diffraction (neutron and synchrotron), X-ray absorption spectroscopy, and magnetic properties measurements, we show that Ru/Ir cations in Ba3BiRu2O9 and Ba3BiIr2O9 have oxidation states between +4 and +4.5, suggesting that Bi cations exist in an unusual average oxidation state intermediate between the conventional +3 and +5 states (which is confirmed by the Bi L3-edge spectrum of Ba3BiRu2O9). Precise measurements of lattice parameters from synchrotron diffraction are consistent with the presence of intermediate oxidation state bismuth cations throughout the doping ranges. We find that relatively small amounts of doping (∼10 at%) on the bismuth site suppress and then completely eliminate the sharp structural and magnetic transitions observed in pure Ba3BiRu2O9 and Ba3BiIr2O9, strongly suggesting that the unstable electronic state of bismuth plays a critical role in the behavior of these materials. © 2013 American Chemical Society.
- ItemMagnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F(American Chemical Society, 2013-12-26) Avdeev, M; Ling, CD; Tan, TT; Li, S; Oyama, G; Yamada, A; Barpanda, PThe magnetic structure and properties of sodium iron fluorophosphate Na2FePO4F (space group Pbcn), a cathode material for rechargeable batteries, were studied using magnetometry and neutron powder diffraction. The material, which can be described as a quasi-layered structure with zigzag Fe-octahedral chains, develops a long-range antiferromagnetic order below ∼3.4 K. The magnetic structure is rationalized as a super-exchange-driven ferromagnetic ordering of chains running along the a-axis, coupled antiferromagnetically by super-super-exchange via phosphate groups along the c-axis, with ordering along the b-axis likely due to the contribution of dipole–dipole interactions. © 2013 American Chemical Society
- ItemManipulation of planar oxygen defect arrangements in multifunctional magnèli titanium oxide hybrid systems: from energy conversion to water treatment(Royal Society of Chemistry, 2020-10-28) Liu, YC; Yang, J; Liu, Y; Zheng, J; Lee, W; Shi, JJ; Horlyck, J; Xie, JZ; Tay, YY; Tan, TT; Yu, DH; Mole, RA; McIntyre, GJ; Zhang, CY; Toe, CY; Waite, TD; Scott, J; Wang, Y; Wu, T; Han, SH; Li, SAn extremely close relationship exists between energy usage and water supply with a tremendous amount of energy being consumed to process water for drinking and other purposes. The current energy crisis and inefficient water management place enormous stress on the sustainability of our society and environment. As such, the development of high-efficiency, cost-effective, and environmentally friendly materials which possess co-existing functionalities for applications ranging from energy capture to water treatment in one material, provides an opportunity to achieve sustainable development. As multifunctional materials, the layer-structured Magnèli titanium oxides with stoichiometry of TinO2n−1 (n ≥ 2) have been extensively studied in view of their potential for photocatalytic, thermoelectric and photothermal applications over the past few years. This group of materials occurs naturally as layered structures with planar oxygen defects, however, understanding of the correlation between the planar arrangements of the oxygen defects and various energy-related properties remains limited. Here, we demonstrate how the formation of layer structured TinO2n−1 with various planar oxygen defect arrangements correlates with the changes of their physical and chemical properties. The experimental results from inelastic neutron scattering analysis and electrical characterizations provide evidence that the planar oxygen defects are responsible for phonon scattering and exert a strong influence on their electrical conductivities. Manipulating these planar defects allows interconversion between different phases, which changes the interplay between electronic and phononic sub-systems. These manipulations potentially enable optimization of the corresponding physical properties of these materials such that they are rendered suitable for applications that require co-operative multifunctionality. More specifically, the experimental results demonstrate that the valence band positions and the onset potentials in the materials are raised, further enhancing their ability for catalysis of electrochemical reactions. This work also demonstrates the combinational effects of the thermoelectric and photothermal properties of these materials on their photocatalytic and electrochemical performance thereby providing a novel means of controlling the multi-response functionality of these materials for a variety of applications in different environments. © The Royal Society of Chemistry 2020
- ItemNeutron Laue diffraction study of the complex low-temperature magnetic behaviour of brownmillerite-type Ca2Fe2O5(International Union of Crystallography, 2015-01-01) Auckett, JE; McIntyre, GJ; Avdeev, M; De Bruyn, H; Tan, TT; Li, S; Ling, CDThe atomic and magnetic structure of brownmillerite Ca2Fe2O5 has been refined against single-crystal neutron Laue diffraction data collected at 300, 100 and 10 K under zero-field and low-magnetic field (35 Oe = 35 × 103/4[pi] A m-1) conditions. Ca2Fe2O5 is a canted G-type antiferromagnet with Pcm'n' symmetry, the magnetic moments on Fe being directed approximately along the crystallographic c axis at room temperature. The refinement results show clearly that this magnetic structure persists down to T = 10 K, despite a previous suggestion that an anomalous magnetic susceptibility enhancement observed in Ca2Fe2O5 single crystals between 40 and 140 K might signify a reorientation of the antiferromagnetic easy axis from c to a below 40 K. Alternative explanations for this susceptibility anomaly are considered in terms of the evidence for partial or short-range loss of order in the anomalous regime, possibly due to the presence of multiple competing sublattice interactions. © International Union of Crystallography
- ItemOxygen level dependent lattice dynamics of Na0.73CoO2-δ.(American Chemical Society, 2010-11-22) Tsai, PH; Donelson, R; Tan, TT; Avdeev, M; Yu, DH; Strassle, T; Li, SThe optical and acoustic phonon branches of Na0.73CoO2-δ have been determined using Raman scattering and inelastic neutron scatterings, and their correlation with phononic thermal conductivity kph in terms of oxygen-vacancy concentration δ was investigated. The experimentally observed phonon stiffening of the Raman-active E1g mode suggests that oxygen vacancies may help stabilize texturing of Na ions that gives rise to higher kph with increasing δ. The generalized phonon density of states characterized using inelastic neutron scattering exhibits subtle stiffening of acoustic and optical phonons with δ, which appears to be responsible for the variations in kph(T) profile in the temperature range 323−923 K. © 2010, American Chemical Society
- ItemSynthesis and characterization of the crystal and magnetic structures and properties of the hydroxyfluorides Fe(OH)F and Co(OH)F(Americal Chemical Society, 2013-12-16) Ben Yahia, H; Shikano, M; Tabuchi, M; Kobayashi, H; Avdeev, M; Tan, TT; Liu, S; Ling, CDThe title compounds were synthesized by a hydrothermal route from a 1:1 molar ratio of lithium fluoride and transition-metal acetate in an excess of water. The crystal structures were determined using a combination of powder and/or single-crystal X-ray and neutron powder diffraction (NPD) measurements. The magnetic structure and properties of Co(OH)F were characterized by magnetic susceptibility and low-temperature NPD measurements. M(OH)F (M = Fe and Co) crystallizes with structures related to diaspore-type α-AlOOH, with the Pnma space group, Z = 4, a = 10.471(3) Å, b = 3.2059(10) Å, and c = 4.6977(14) Å and a = 10.2753(3) Å, b = 3.11813(7) Å, and c = 4.68437(14) Å for the iron and cobalt phases, respectively. The structures consist of double chains of edge-sharing M(F,O)6 octahedra running along the b axis. These infinite chains share corners and give rise to channels. The protons are located in the channels and form O–H···F bent hydrogen bonds. The magnetic susceptibility indicates an antiferromagnetic ordering at ∼40 K, and the NPD measurements at 3 K show that the ferromagnetic rutile-type chains with spins parallel to the short b axis are antiferromagnetically coupled to each other, similarly to the magnetic structure of goethite α-FeOOH. © 2014, American Chemical Society