Browsing by Author "Tadanaga, K"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHydrothermal synthesis, crystal structure, and superconductivity of a double-perovskite Bi oxide(American Chemical Society, 2015-12-23) Rubel, MHK; Takei, T; Kumada, N; Ali, MM; Miura, A; Tadanaga, K; Oka, K; Azuma, M; Yashima, M; Fujii, K; Magome, E; Moriyoshi, C; Kuroiwa, Y; Hester, JR; Avdeev, MDouble-perovskite Bi oxides are a new series of superconducting materials, and their crystal structure and superconducting properties are under investigation. In this paper, we describe the synthesis and characterization of a new double-perovskite material that has an increased superconductive transition temperature of 31.5 K. The structure of the material was examined using powder neutron diffraction (ND), synchrotron X-ray diffraction (SXRD), and transmission electron microscopy (TEM). Rietveld refinement of the sample based on ND and SXRD data confirmed an A-site-ordered (K1.00)(Ba1.00)3(Bi0.89Na0.11)4O12 double-perovskite-type structure with the space group Im3̅m (No. 229). This structural analysis revealed the incorporation of Na with Bi in the structure and a bent bond between (Na, Bi)–O–(Na, Bi). TEM analyses also confirmed a cubic double-perovskite structure. This hydrothermally synthesized compound exhibited a large shielding volume fraction, exceeding 100%, with onset of superconductivity at ∼31.5 K. Its electrical resistivity dropped near onset at ∼28 K, and zero resistivity was confirmed below 13 K. The calculated band structure revealed that the metallicity of the compound and the flatness of the conduction bands near the Fermi level (EF) are important for the appearance of superconductivity. © 2015 American Chemical Society
- ItemNitrogen-rich molybdenum nitride synthesized in a crucible under air(American Chemical Society, 2024-03-05) Demura, M; Nagao, M; Lee, CH; Goto, Y; Nambu, Y; Avdeev, M; Masubuchi, Y; Mitsudome, T; Sun, W; Tadanaga, K; Miura, AThe triple bond in N2 is significantly stronger than the double bond in O2, meaning that synthesizing nitrogen-rich nitrides typically requires activated nitrogen precursors, such as ammonia, plasma-cracked atomic nitrogen, or high-pressure N2. Here, we report a synthesis of nitrogen-rich nitrides under ambient pressure and atmosphere. Using Na2MoO4 and dicyandiamide precursors, we synthesized nitrogen-rich γ-Mo2N3 in an alumina crucible under an ambient atmosphere, heated in a box furnace between 500 and 600 °C. Byproducts of this metathesis reaction include volatile gases and solid Na(OCN), which can be washed away with water. X-ray diffraction and neutron diffraction showed Mo2N3 with a rock salt structure having cation vacancies, with no oxygen incorporation, in contrast to the more common nitrogen-poor rock salt Mo2N with anion vacancies. Moreover, an increase in temperature to 700 °C resulted in molybdenum oxynitride, Mo0.84N0.72O0.27. This work illustrates the potential for dicyandiamide as an ambient-temperature metathesis precursor for an increased effective nitrogen chemical potential under ambient conditions. The classical experimental setting often used for solid-state oxide synthesis, therefore, has the potential to expand the nitride chemistry. © 2024 American Chemical Society.