Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tabuchi, M"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Synthesis and characterization of the crystal and magnetic structures and properties of the hydroxyfluorides Fe(OH)F and Co(OH)F
    (Americal Chemical Society, 2013-12-16) Ben Yahia, H; Shikano, M; Tabuchi, M; Kobayashi, H; Avdeev, M; Tan, TT; Liu, S; Ling, CD
    The title compounds were synthesized by a hydrothermal route from a 1:1 molar ratio of lithium fluoride and transition-metal acetate in an excess of water. The crystal structures were determined using a combination of powder and/or single-crystal X-ray and neutron powder diffraction (NPD) measurements. The magnetic structure and properties of Co(OH)F were characterized by magnetic susceptibility and low-temperature NPD measurements. M(OH)F (M = Fe and Co) crystallizes with structures related to diaspore-type α-AlOOH, with the Pnma space group, Z = 4, a = 10.471(3) Å, b = 3.2059(10) Å, and c = 4.6977(14) Å and a = 10.2753(3) Å, b = 3.11813(7) Å, and c = 4.68437(14) Å for the iron and cobalt phases, respectively. The structures consist of double chains of edge-sharing M(F,O)6 octahedra running along the b axis. These infinite chains share corners and give rise to channels. The protons are located in the channels and form O–H···F bent hydrogen bonds. The magnetic susceptibility indicates an antiferromagnetic ordering at ∼40 K, and the NPD measurements at 3 K show that the ferromagnetic rutile-type chains with spins parallel to the short b axis are antiferromagnetically coupled to each other, similarly to the magnetic structure of goethite α-FeOOH. © 2014, American Chemical Society
  • No Thumbnail Available
    Item
    Synthesis and characterization of the crystal structure, the magnetic and the electrochemical properties of the new fluorophosphate LiNaFe[PO4]F
    (Royal Society of Chemistry, 2012-8-16) Ben Yahia, H; Shikano, M; Sakaebe, H; Koike, S; Tabuchi, M; Kobayashi, H; Kawaji, H; Avdeev, M; Miiller, W; Ling, CD
    The new compound LiNaFe[PO4]F was synthesized by a solid state reaction route, and its crystal structure was determined using neutron powder diffraction data. LiNaFe[PO4]F was characterized by 57Fe Mossbauer spectroscopy, magnetic susceptibility, specific heat capacity, and electrochemical measurements. LiNaFe[PO4]F crystallizes with orthorhombic symmetry, space group Pnma, with a = 10.9568(6) A, b = 6.3959(3) A, c = 11.4400(7) A, V = 801.7(1) A3 and Z = 8. The structure consists of edge-sharing FeO4F2 octahedra forming FeFO3 chains running along the b axis. These chains are interlinked by PO4 tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The specific heat and magnetization measurements show that LiNaFe[PO4]F undergoes a three-dimensional antiferromagnetic ordering at TN = 20 K. The neutron powder diffraction measurements at 3 K show that each FeFO3 chain along the b-direction is ferromagnetic (FM), while these FM chains are antiferromagnetically coupled along the a and c-directions with a non-collinear spin arrangement. The galvanometric cycling showed that without any optimization, one mole of alkali metal is extractable between 1.0 V and 5.0 V vs. Li+/Li with a discharge capacity between 135 and 145 mAh g-1. © 2012, Royal Society of Chemistry.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback