Browsing by Author "Stuart, G"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemStructure and magnetic properties of the AB3Si2Sn7O16 layered oxides(Australian Institute of Physics, 2017-02-03) Allison, MC; Ling, CD; Schmid, S; Avdeev, M; Stuart, G; Söhnel, TLayered transition metal compounds with geometrically frustrated architectures are widely studied due to the novel effects that arise in a material where lattice geometry prevents the formation of a stable low temperature magnetic ground state in which all interactions between electron spins are satisfied. The parent compound for this study, Fe4Si2Sn7O16, provides a novel situation in oxide compounds. It can be described as a layered composite of oxygen linked (FeSn6) octahedra (the stannide layer) and (FeO6)/(SnO6) octahedra with a kagomé topology (the oxide layer). These layers are separated by SiO4 tetrahedra and the divalent iron in both layers appear to highly substitutionally liable, this combination of features therefore provides a rare opportunity to study a new series of materials with two discrete magnetically frustrated lattices (triangular and kagomé). To date, we have studied the changes in structure as iron is systematically replaced in the structure with iridium, ruthenium, cobalt and/or manganese. Refinements of the X-ray and neutron powder diffraction data show that each transition metal has strong preferences for either the stannide or oxide layer positions dependent upon ionic size and electronic configuration. In this presentation we will show the current results of our studies on the structure, electronic configuration and magnetic properties.