Browsing by Author "Song, JN"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemAn in vitro model to investigate the interactions between antimicrobial peptides and the outer membrane of gram-negative pathogens(Australian Institute of Nuclear Science and Engineering, 2016-11-29) Han, ML; Shen, HH; Zhu, Y; Le Brun, AP; Holt, SA; Roberts, K; Song, JN; Cooper, MA; Moskowitz, SM; Velkov, T; Li, JIncreasing antibiotic resistance in Gram-negative bacteria led to polymyxins as the last therapy. Polymyxins present their antimicrobial activity through an initial electronical interaction with lipid A in the outer membrane (OM) of GNB, and the most common mechanism of polymyxin resistance is through modifications of lipid A with positively charged groups, such as 4-amino-L-arabinose (L-Aar4N) or phosphoethanolamine (pEtN). However, it is notable that Gram-negative bacteria employ a combination of charge-charge repulsion mechanism and the modification to fatty acyl chains of lipid A to obtain high-level polymyxin resistance. Hence, we designed hydrophobic polymyxin-related lipopeptides in order to overcome modified lipid A to insert into the outer membrane of Gram-negative bacteria. In this study, we employed neutron reflectometry (NR) study to investigate the interactions between lipid A and polymyxins. Lipid A was extracted from polymyxin-susceptible and -resistant pseudomonas aeruginosa strains, and analysed using ESI-MS in the negative ion mode. The asymmetric lipid A: deuterated DPPC bilayers were deposited on SiO2 surfaces by combined Langmuir-Blodgett and Langmuir-Schaefer disposition methods, and characterised by neutron reflectometer. Our results showed L-Ara4N modified lipid A was observed in polymyxin-resistant PAKpmrB6 strain, but not in the wild-type PAK strain. The NR data obtained from unmodified lipid A: DPPC bilayer was fitted into a five-layer model. Whereas, a six-layer model containing an extra outer headgroup was established for L-Ara4N modified lipid A: d-DPPC bilayer. Our results showed a dense of PMB (volume fraction of >20%) bound to the surface of both unmodified and modified lipid A: DPPC bilayers. While it is notable that the significant changes in NR profiles obtained from H2O contrast indicated about 15.8% and 6.1% of PMB penetrated into the wild-type lipid A headgroup and fatty acyl chains, respectively, but without penetration into L-Ara4N-lipid A: d-DPPC bilayer. However, the employment of octpeptin A3 induced higher hydrophobic interactions with L-Ara4N-lipid A: d-DPPC bilayer. Our study provides an in vitro model to investigate the interactions of polymyxins with OM bilayers in GNB, and confirmed that lipid A modification with L-Ara4N was certainly to reduce the penetration of PMB into bacterial membranes. Remarkably, the higher binding affinity between octapeptin A3 and L-Ara4N modified lipid A indicated its potential to be the new generation antibiotics for the therapy of infections caused by multi-drug resistant Gram negative bacteria.
- ItemPhytantriol-based cubosome formulation as an antimicrobial against Lipopolysaccharide-deficient gram-gegative bacteria(American Chemical Society, 2020-09-17) Lai, XF; Ding, Y; Wu, CM; Chen, X; Jiang, JH; Hsu, HY; Wang, Y; Le Brun, AP; Song, JN; Han, ML; Li, J; Shen, HHTreatment of multidrug-resistant (MDR) bacterial infections increasingly relies on last-line antibiotics, such as polymyxins, with the urgent need for discovery of new antimicrobials. Nanotechnology-based antimicrobials have gained significant importance to prevent the catastrophic emergence of MDR over the past decade. In this study, phytantriol-based nanoparticles, named cubosomes, were prepared and examined in vitro by minimum inhibitory concentration (MIC) and time-kill assays against Gram-negative bacteria: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Phytantriol-based cubosomes were highly bactericidal against polymyxin-resistant, lipopolysaccharide (LPS)-deficient A. baumannii strains. Small-angle neutron scattering (SANS) was employed to understand the structural changes in biomimetic membranes that replicate the composition of these LPS-deficient strains upon treatment with cubosomes. Additionally, to further understand the membrane-cubosome interface, neutron reflectivity (NR) was used to investigate the interaction of cubosomes with model bacterial membranes on a solid support. These results reveal that cubosomes might be a new strategy for combating LPS-deficient Gram-negative pathogens. © 2020 American Chemical Society.
- ItemA polytherapy based approach to combat antimicrobial resistance using cubosomes(Springer Nature, 2022-01-17) Lai, XF; Han, ML; Ding, Y; Chow, SH; Le Brun, AP; Wu, CM; Bergen, PJ; Jiang, JH; Hsu, HY; Muir, BW; White, J; Song, JN; Li, J; Shen, HHA depleted antimicrobial drug pipeline combined with an increasing prevalence of Gram-negative ‘superbugs’ has increased interest in nano therapies to treat antibiotic resistance. As cubosomes and polymyxins disrupt the outer membrane of Gram-negative bacteria via different mechanisms, we herein examine the antimicrobial activity of polymyxin-loaded cubosomes and explore an alternative strategy via the polytherapy treatment of pathogens with cubosomes in combination with polymyxin. The polytherapy treatment substantially increases antimicrobial activity compared to polymyxin B-loaded cubosomes or polymyxin and cubosomes alone. Confocal microscopy and neutron reflectometry suggest the superior polytherapy activity is achieved via a two-step process. Firstly, electrostatic interactions between polymyxin and lipid A initially destabilize the outer membrane. Subsequently, an influx of cubosomes results in further membrane disruption via a lipid exchange process. These findings demonstrate that nanoparticle-based polytherapy treatments may potentially serve as improved alternatives to the conventional use of drug-loaded lipid nanoparticles for the treatment of “superbugs”. © The Authors - Open Access CC-BY 4.0
- ItemA polytherapy based approach to combat antimicrobial resistance using cubosomes(Springer Nature, 2022-01-17) Lai, XF; Han, ML; Ding, Y; Chow, SH; Le Brun, AP; Wu, CM; Bergen, PJ; Jiang, JH; Hsu, HY; Muir, BW; White, J; Song, JN; Shen, HHA depleted antimicrobial drug pipeline combined with an increasing prevalence of Gram-negative ‘superbugs’ has increased interest in nano therapies to treat antibiotic resistance. As cubosomes and polymyxins disrupt the outer membrane of Gram-negative bacteria via different mechanisms, we herein examine the antimicrobial activity of polymyxin-loaded cubosomes and explore an alternative strategy via the polytherapy treatment of pathogens with cubosomes in combination with polymyxin. The polytherapy treatment substantially increases antimicrobial activity compared to polymyxin B-loaded cubosomes or polymyxin and cubosomes alone. Confocal microscopy and neutron reflectometry suggest the superior polytherapy activity is achieved via a two-step process. Firstly, electrostatic interactions between polymyxin and lipid A initially destabilize the outer membrane. Subsequently, an influx of cubosomes results in further membrane disruption via a lipid exchange process. These findings demonstrate that nanoparticle-based polytherapy treatments may potentially serve as improved alternatives to the conventional use of drug-loaded lipid nanoparticles for the treatment of “superbugs”. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International Licence.
- ItemSolid and liquid surface-supported bacterial membrane mimetics as a platform for the functional and structural studies of antimicrobials(MDPI, 2022-09-20) Li, S; Ren, R; Lyu, L; Song, JN; Wang, Y; Lin, TW; Brun, AL; Hsu, HY; Shen, HHIncreasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).