Browsing by Author "Shibata, N"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemExperimental observation of long-range magnetic order in icosahedral quasicrystals(American Chemical Society, 2021-11-17) Tamura, R; Ishikawa, A; Suzuki, S; Kotajima, T; Tanaka, Y; Seki, T; Shibata, N; Yamada, T; Fujii, T; Wang, CW; Avdeev, M; Nawa, K; Okuyama, D; Sato, TJQuasicrystals (QCs), first discovered in 1984, generally do not exhibit long-range magnetic order. Here, we report on long-range magnetic order in the real icosahedral quasicrystals (i QCs) Au–Ga–Gd and Au–Ga–Tb. The Au65Ga20Gd15i QC exhibits a ferromagnetic transition at TC = 23 K, manifested as a sharp anomaly in both magnetic susceptibility and specific heat measurements, along with an appearance of magnetic Bragg peak below TC. This is the first observation of long-range magnetic order in a real quasicrystal, in contrast to the spin-glass-like behaviors observed for the other magnetic quasicrystals found to date. Moreover, when Gd is replaced by Tb, i.e., for the Au65Ga20Tb15i QC, a ferromagnetic behavior is still retained with TC = 16 K. Although the sharp anomaly in the specific heat observed for the Au65Ga20Gd15i QC becomes broadened upon Tb substitution, neutron diffraction experiments clearly show marked development of magnetic Bragg peaks just below TC, indicating long-range magnetic order for the Au65Ga20Tb15i QC also. Our findings can contribute to the further investigation of exotic magnetic orders formed on real quasiperiodic lattices with unprecedented highest global symmetry, i.e., icosahedral symmetry. © 2021 The Authors - CC BY. Published by American Chemical Society
- ItemLarge magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film(Nature Research, 2014-06-11) Zhao, HY; Kimura, H; Cheng, ZX; Osada, M; Wang, JL; Wang, XL; Dou, SX; Liu, Y; Yu, JD; Matsumoto, T; Tohei, T; Shibata, N; Ikuhara, YMultiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi5Ti3FeO15 with high ferroelectric Curie temperature of ~1000 K. Bi5Ti3FeO15 thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi5Ti3FeO15 with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature. © 2020 Springer Nature Limited
- ItemLong-range magnetic order in real icosahedral quasicrystals(Research Square, 2021-03-22) Tamura, R; Ishikawa, A; Suzuki, S; Kotajima, A; Tanaka, Y; Seki, T; Shibata, N; Yamada, T; Fujii, T; Wang, CW; Avdeev, M; Sato, TQuasicrystals (QCs), first discovered in 1984, generally do not exhibit long-range magnetic order. Here, we report on long-range magnetic order in the real icosahedral quasicrystals (i QCs) Au–Ga–Gd and Au–Ga–Tb. The Au65Ga20Gd15 i QC exhibits a ferromagnetic transition at TC = 23 K, manifested as a sharp anomaly in both magnetic-susceptibility and specific-heat measurements. Quick magnetic saturation to almost the full moment (7μB/Gd3+) is observed under 100 Oe at 2 K. This is the first observation of long-range magnetic order in a real quasicrystal, in contrast to the spin-glass-like behaviours observed for the other magnetic quasicrystals found to date. Moreover, when Gd is replaced by Tb, i.e. for the Au65Ga20Tb15 i QC, a ferromagnetic behaviour is still retained with TC = 16 K. Although the sharp anomaly in the specific heat observed for the Au65Ga20Gd15 i QC is significantly broadened upon Tb substitution, neutron-diffraction experiments clearly show the marked development of magnetic Bragg peaks below TC, indicating long-range magnetic order for the Au65Ga20Tb15 i QC also. Our findings can contribute to the further investigation of exotic magnetic orders formed on real quasiperiodic lattices with unprecedented highest global symmetry, i.e. icosahedral symmetry. © This work is licensed under a CC BY 4.0 License.