Browsing by Author "Shen, L"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHigh ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries(Elsevier, 2021-06-01) Shen, L; Yang, J; Liu, G; Avdeev, M; Yao, XThe low ionic conductivity and poor dendrites suppression capability of Na3Zr2Si2PO12 solid electrolyte limit the practical application of all-solid-state sodium batteries. Herein, the optimized Na3.4Mg0.1Zr1.9Si2.2P0.8O12 electrolyte is obtained by simultaneously substituting the Zr4+ with Mg2+ and P5+ with Si4+ through solid-state reaction. The Na3.4Mg0.1Zr1.9Si2.2P0.8O12 electrolyte has superior room temperature ionic conductivity of 3.6 × 10−3 S cm−1, which is 17 times higher than that of pristine Na3Zr2Si2PO12. No short circuit of the Na/Na3.4Mg0.1Zr1.9Si2.2P0.8O12/Na symmetric battery is observed up to 2.0 mA cm−2, and the symmetric battery displays stable sodium plating/stripping cycles for over 2000 h at 0.1 mA cm−2 and 300 h at 1.0 mA cm−2. The resultant Na3.4Mg0.1Zr1.9Si2.2P0.8O12 electrolyte is further employed in two all-solid-state sodium batteries. The Na3V2(PO4)3/Na3.4Mg0.1Zr1.9Si2.2P0.8O12/Na all-solid-state sodium battery maintains a discharge capacity of 93.3 mAh g−1 at 0.1C after 50 cycles, and the FeS2/Na3.4Mg0.1Zr1.9Si2.2P0.8O12/Na all-solid-state sodium battery delivers a discharge capacity of 173.1 mAh g−1 at 0.1C after 20 cycles, which are significantly enhanced compared with those based on pristine Na3Zr2Si2PO12. This strategy provides an efficient method to prepare optimized NASICON solid electrolytes with high ionic conductivity and excellent dendrites suppression capability and promotes the practical application of all-solid-state sodium batteries. © 2021 Elsevier Ltd.
- ItemUltrastable all-solid-state sodium rechargeable batteries(American Chemical Society, 2020-08-11) Yang, J; Liu, G; Avdeev, M; Wan, H; Han, F; Shen, L; Zou, Z; Shi, S; Hu, YS; Wang, CS; Yao, XThe insufficient ionic conductivity of oxide-based solid electrolytes and the large interfacial resistance between the cathode material and the solid electrolyte severely limit the performance of room-temperature all-solid-state sodium rechargeable batteries. A NASICON solid electrolyte Na3.4Zr1.9Zn0.1Si2.2P0.8O12, with superior room-temperature conductivity of 5.27 × 10–3 S cm–1, is achieved by simultaneous substitution of Zr4+ by aliovalent Zn2+ and P5+ by Si4+ in Na3Zr2Si2PO12. The bulk conductivity and grain boundary conductivity of Na3.4Zr1.9Zn0.1Si2.2P0.8O12 are nearly 20 times and almost 50 times greater than those of pristine Na3Zr2Si2PO12, respectively. The FeS2||polydopamine-Na3.4Zr1.9Zn0.1Si2.2P0.8O12||Na all-solid-state sodium batteries, with a polydopamine modification thin layer between the solid electrolyte and the cathode, maintain a high reversible capacity of 236.5 mAh g–1 at a 0.1 C rate for 100 cycles and a capacity of 133.1 mAh g–1 at 0.5 C for 300 cycles, demonstrating high performance for all-solid-state sodium batteries. © 2020 American Chemical Society