Browsing by Author "Sharmeen, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHuman activity and climate variability project: annual report 2001.(Australian Nuclear Science and Technology Organisation, 2002-01) Harle, KJ; Heijnis, H; Henderson-Sellers, A; Sharmeen, S; Zahorowski, WKnowledge of the state of the Australian environment including natural climate variability prior to colonial settlement is vital if we are to define and understand the impact of over two hundred years of post-industrial human activity on our landscape. ANSTO in conjunction with university partners is leading a major research effort to provide natural archives of human activity and climate variability over the last 500 years in Australia utilising a variety of techniques including lead-210 and radiocarbon dating and analyses of proxy indicators (such as microfossils) as well as direct evidence (such as trace elements) of human activity and climate variability. The other major project objectives were to contribute to the understanding of the impact of human induced and natural aerosols in the East Asian region on climate through analysis and sourcing of fine particles and characterisation of air samples using radon concentrations and to contribute to the improvement of land surface parameterisation schemes and investigate the potential to use stable isotopes to improve global climate models and thus improve our understanding of future climate.
- ItemHuman activity and climate variability project: annual report 2002.(Australian Nuclear Science and Technology Organisation, 2002-11) Chambers, SD; Harle, KJ; Sharmeen, S; Zahorowski, W; Cohen, DD; Heijnis, H; Henderson-Sellers, AThis project aims to utilise nuclear techniques to investigate evidence of human activity and climate variability in the Asia Australasian regions. It was originally designed to run over three years, commencing July 1999, with three parallel research tasks: Task 1: Past -- Natural archives of human activity and climate variability; Task 2: Present -- Characterisation of the global atmosphere using radon and fine particles; Task 3: Future -- Climate modelling: evaluation and improvement; Main project objectives -- To determine what proportions of changes in natural archives are due to human activity and climate variability; -- To contribute to the understanding of the impact of human induced and natural aerosols in the East Asian region on climate through analysis and sourcing of fine particles and characterisation of air samples using radon concentrations; -- To contribute to the improvement of land surface parameterisation schemes and investigate the potential to use isotopes to improve global climate models and thus improve our understanding of future climate. Significant project outcomes -- An improved understanding of natural and anthropogenic factors influencing change in our environment; -- A better understanding of the role of aerosols in climate forcing in the Asian region, leading to improved ability to predict climate change; -- An improved understanding of long term changes in the concentrations of trace species in the atmosphere on a regional and a global basis and their use in model evaluation; -- Improved understanding of the impact of different land-surface schemes on simulations by atmospheric models. The next two years of the project Our new and extended projects efforts include: 1) Aligning ourselves with the recently developed mission of the IGBP/PAGES research program 'Human Interactions on Terrestrial Ecosystems' and co-ordinating the Australasian research effort. Further research will focus on: (1) How widespread and reliable are evidence of major climatic events, such as storms and El Nino/La Nina cycles, in natural archives? This would require more natural archives to be examined from northern Australia and also records to be obtained from southern Australia. (2) The spatial extent of mining related pollutants, in the form of aerosol particles, which is of importance to managing the waste in the future. A combination of aerosol and archival studies will address this issue. In Summary: To achieve these extended goals we successfully gained another two years of further support for our project.