Browsing by Author "Schneider, L"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemHistory of human impact on Lake Kutubu, Papua New Guinea: the geochemical signatures of oil and gas mining activities in sediments(Elsevier, 2016-04-01) Schneider, L; Haberle, SG; Maher, WA; Krikowa, F; Zawadzki, A; Heijnis, HLake Kutubu, a large tropical lake in Papua New Guinea, is well known for its ecological importance; however, there have been recent changes to the pristine nature of this lake due to activities associated with the largest oil and gas project in PNG. The aim of this study was to determine the geochemical profile of sediment cores of Lake Kutubu and to comprehend the contamination changes undergone in this lake due to mining activities utilising the hydraulic fracturing method. Sediment core profiles of Na, Mg, Al, Si, P, Ca, Ti, Cr, Fe, Mn, Ni, Cu, Zn, As, Se, Sr, Cd, Ba, Ce, Pb and U, grain size and dating analyses were conducted for five sites in the lake. Grain size and dating demonstrated that the northwest side of Lake Kutubu has sediments of allocthonous origin while the southeast sediments are of autochthonous origin. Ba was the element with the largest changes in concentrations since 1990 and the best tracer of mining activities near the lake. Sites KTB 02 and KTB 10 northwest of the lake showed the most distinct changes in element concentrations. Element enrichment factors (EF = 2.8, 4.2 and 3.2 respectively) demonstrated that Mn, Se and Ba have undergone a moderate enrichment in the lake since mining activities started. Ni, Cd and Se concentrations exceed sediment guidelines in some samples. No guideline is available for Ba, and special attention should be given to this element in this lake. This study demonstrated that Lake Kutubu oil/gas extraction activities are significant sources of elements to this lake and highlights the need for studies on the partitioning and speciation of elements to understand organism metal exposure. © 2016, Elsevier Ltd.
- ItemHistory of metal contamination in Lake Illawarra, NSW, Australia(Elsevier, 2015-01-01) Schneider, L; Maher, W; Potts, J; Gruber, B; Batley, GE; Taylor, A; Chariton, AA; Krikowa, F; Zawadzki, A; Heijnis, HLake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and 210Pb and 137Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year−1 in Griffins Bay and 0.3 cm year−1 in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake.© 2015, Elsevier Ltd.
- ItemHistory of sediment geochemical signals in an area of oil reserve development in Lake Kutubu, PNG(University of New South Wales and Australian Nuclear Science and Technology Organisation, 2015-07-09) Schneider, L; Harberle, S; Maher, WA; Krikowa, F; Zawadzki, A; Heijnis, HNot provided to ANSTO Library.
- ItemHow significant is atmospheric metal contamination from mining activity adjacent to the Tasmanian Wilderness World Heritage Area? A spatial analysis of metal concentrations using air trajectories models(Elsevier, 2019-03-15) Schneider, L; Mariani, M; Saunders, KM; Maher, WA; Harrison, JJ; Fletcher, MS; Zawadzki, A; Heijnis, H; Haberle, SGThis study investigated metal contamination from historical mining in lakes in the Tasmanian Wilderness World Heritage Area (TWWHA) and surrounding region. The largest increase in sedimentation and metal contamination occurred ca. 1930 when open-cut mining commenced and new mining technology was introduced into the region. The geochemical signal of lake sediments changed from reflecting the underlying geology and lithology to that reflecting mining activities. The HYSPLIT air particle trajectory model explains metal distribution in the lakes, with those in the northwest region closest to the mines having the highest metal contamination. Lake metal concentrations since mining activities commenced are in the order: Owen Tarn > Basin Lake > Perched Lake > Lake Dove > Lake Dobson > Lake Cygnus, with Perched Lake and Lakes Dove, Dobson and Cygnus in the TWWHA. Metal contamination affected centres up to 130 km down-wind of mining sites. Enrichment factors (EF) for Pb, Cu, As and Cd are >1 for all lakes, with Owen Tarn and Basin Lake having very high EFs for Cu and Pb (98 and 91, respectively). Pb, Cu, As and Cd concentrations are above the Australia/New Zealand lower sediment guidelines, with Pb, Cu and As above the high guidelines in Owen Tarn and Basin Lake. This study demonstrated the legacy of metal contamination in the TWWHA by mining activities and the consequences of a lack of execution of environmental regulations by past governments in Tasmania.© 2018 Elsevier B.V
- ItemThe impacts of intensive mining on terrestrial and aquatic ecosystems: A case of sediment pollution and calcium decline in cool temperate Tasmania, Australia(Elsevier, 2020-10-01) Beck, KK; Mariani, M; Fletcher, MS; Schneider, L; Aquino-López, MA; Gadd, PS; Heijnis, H; Saunders, KM; Zawadzki, AMining causes extensive damage to aquatic ecosystems via acidification, heavy metal pollution, sediment loading, and Ca decline. Yet little is known about the effects of mining on freshwater systems in the Southern Hemisphere. A case in point is the region of western Tasmania, Australia, an area extensively mined in the 19th century, resulting in severe environmental contamination. In order to assess the impacts of mining on aquatic ecosystems in this region, we present a multiproxy investigation of the lacustrine sediments from Owen Tarn, Tasmania. This study includes a combination of radiometric dating (14C and 210Pb), sediment geochemistry (XRF and ICP-MS), pollen, charcoal and diatoms. Generalised additive mixed models were used to test if changes in the aquatic ecosystem can be explained by other covariates. Results from this record found four key impact phases: (1) Pre-mining, (2) Early mining, (3) Intense mining, and (4) Post-mining. Before mining, low heavy metal concentrations, slow sedimentation, low fire activity, and high biomass indicate pre-impact conditions. The aquatic environment at this time was oligotrophic and dystrophic with sufficient light availability, typical of western Tasmanian lakes during the Holocene. Prosperous mining resulted in increased burning, a decrease in landscape biomass and an increase in sedimentation resulting in decreased light availability of the aquatic environment. Extensive mining at Mount Lyell in the 1930s resulted in peak heavy metal pollutants (Pb, Cu and Co) and a further increase in inorganic inputs resulted in a disturbed low light lake environment (dominated by Hantzschia amphioxys and Pinnularia divergentissima). Following the closure of the Mount Lyell Co. in 1994 CE, Ca declined to below pre-mining levels resulting in a new diatom assemblage and deformed diatom valves. Therefore, the Owen Tarn record demonstrates severe sediment pollution and continued impacts of mining long after mining has stopped at Mt. Lyell Mining Co. ©2020 Elsevier Ltd
- ItemRecent history of sediment metal contamination in Lake Macquarie, Australia, and an assessment of ash handling procedure effectiveness in mitigating metal contamination from coal-fired power stations(Elsevier, 2014-08-15) Schneider, L; Maher, W; Potts, J; Gruber, B; Batley, GE; Taylor, A; Chariton, AA; Krikowa, F; Zawadzki, A; Heijnis, HThis study assessed historical changes in metal concentrations in sediments of southern Lake Macquarie resulting from the activities of coal-fired power stations, using a multi-proxy approach which combines 210Pb, 137Cs and metal concentrations in sediment cores. Metal concentrations in the lake were on average, Zn: 67 mg/kg, Cu: 15 mg/kg, As: 8 mg/kg, Se: 2 mg/kg, Cd: 1.5 mg/kg, Pb: 8 mg/kg with a maximum of Zn: 280 mg/kg, Cu: 80 mg/kg, As: 21 mg/kg, Se: 5 mg/kg, Cd: 4 mg/kg, Pb: 48 mg/kg. The ratios of measured concentrations in sediment cores to their sediment guidelines were Cd 1.8, As 1.0, Cu 0.5, Pb 0.2 and Zn 0.2, with the highest concern being for cadmium. Of special interest was assessment of the effects of changes in ash handling procedures by the Vales Point power station on the metal concentrations in the sediments. Comparing sediment layers before and after ash handling procedures were implemented, zinc concentrations have decreased 10%, arsenic 37%, selenium 20%, cadmium 38% and lead 14%. An analysis of contaminant depth profiles showed that, after implementation of new ash handling procedures in 1995, selenium and cadmium, the main contaminants in Australian black coal had decreased significantly in this estuary. © 2014, Elsevier B.V.