Browsing by Author "Schneider, JL"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemExpanding the proxy toolkit to help identify past events: Lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami(Elsevier, 2011-07-01) Chagué-Goff, C; Schneider, JL; Goff, JR; Dominey-Howes, D; Strotz, LSome of the proxies used to identify palaeotsunamis are reviewed in light of new findings following the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami, and a revised toolkit provided. The new application of anisotropy of magnetic susceptibility (AMS) to the study of tsunami deposits and its usefulness to determine the hydrodynamic conditions during the emplacement of tsunami sequences, together with data from grain size analysis, are presented. The value of chemical proxies as indicators of saltwater inundation, associated marine shell and/or coral, high-energy depositional environment, and possible contamination, is demonstrated and issues of preservation addressed. We also provide new findings from detailed studies of heavy minerals. New information gathered during the UNESCO - International Oceanographic Commission (IOC) International Tsunami Survey of fine onshore sediments following the 2009 South Pacific Tsunami is presented, and includes grain size, chemical, diatom and foraminifera data. The tsunami deposit varied, ranging from fining-upward sand layers to thin sand layers overlain by a thick layer of organic debris and/or a mud cap. Grain size characteristics, chemical data and microfossil assemblages provide evidence for marine inundation from near shore, and changes in flow dynamics during the tsunami. (C) 2011 Elsevier B.V.
- ItemUsing magnetic fabric to reconstruct the dynamics of tsunami deposition on the Sendai Plain, Japan — the 2011 Tohoku-oki tsunami(Elsevier B.V., 2014-12-01) Schneider, JL; Chagué-Goff, C; Bouchez, JL; Goff, JR; Sugawara, D; Goto, K; Jaffe, BE; Richmond, BThe magnetic fabric and grain size of sand deposits emplaced during the 2011 Tohoku-oki tsunami were studied in five trenches along a 1800 m long shore normal transect on the Sendai plain as well as in a near shore sedimentary infill of a scour depression. The magnetic susceptibility in all deposits is due to ferromagnetic minerals (mainly magnetite) making the anisotropy of magnetic susceptibility (magnetic fabric) suitable for fabric analyses. The dominant magnetic fabric is planar in all trenches and stronger in finer-grained inland deposits than in the coarser sediments. This planar fabric is related to tractive shearing of the bedload basal portion of the tsunami flow that led to the deposition of traction carpet layers. Among the various fabric parameters used for this study, the vertical evolution of the shape factor (q) of the magnetic ellipsoid in each trench follows the evolution of the magnetic lineation (L) and foliation (F). These parameters provide information on the hydrodynamic energy (flow speed) fluctuations during the emplacement of the tsunami deposit. For the most proximal deposits, characterized by well-sorted reworked beach sand with minor fluctuations in grain-size distribution, the magnetic fabric is sensitive to hydrodynamic energy variations during sedimentation. Reconstruction of tsunami flow orientation in the sediments, based on the orientation of the mean Kmax calculated for each trench, appears to be unambiguous only for the sandy infills of small topographic depressions. The variations in flow direction indicators elsewhere could be related to local variation of the flow and to micro-topographic effects. These findings are encouraging for the use of the magnetic fabric proxy in the study of paleotsunami deposits. © 2014 Elsevier B.V.