Browsing by Author "Sargeson, AM"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemNew 64Cu PET imaging agents for personalised medicine and drug development using the hexa-aza cage, SarAr.(Royal Society of Chemistry, 2006-09-07) Di Bartolo, N; Sargeson, AM; Smith, SVThe success of positron emission tomography (PET) in personalised medicine and drug development requires radioisotopes that provide high quality images and flexible chemistry for a broad application. 64Cu is arguably one of the most suitable PET isotopes for imaging with the evolving target agents, but there are not many appropriate chelating agents for 64Cu and this has limited its wider application. The bi-functional chelator, SarAr is known to bind 64Cu2+ quantitatively (i.e. one metal per ligand present) and rapidly (<2 min) at 10−6 M over a range of pH (4–9). In this paper the conjugation of SarAr to the whole and fragmented antibody is described. Conjugation of the SarAr to the protein does not impair its coordination of the 64Cu. It complexes the 64Cu2+ rapidly, quantitatively and essentially irreversibly at pH 5. Animal studies show that the 64Cu–SarAr–immunoconjugates maintain their specificity for the target and are stable in vivo. Also, SarAr is a platform technology, is easy to use in a kit formulation and is readily adaptable for the wider application in 64Cu PET imaging. © 2006, Royal Society of Chemistry
- ItemPositron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates(National Academy of Sciences, 2007-10-30) Voss, SD; Smith, SV; DiBartolo, N; McIntosh, LJ; Cyr, EM; Bonab, AA; Dearling, JLJ; Carter, EA; Fischman, AJ; Treves, ST; Gillies, SD; Sargeson, AM; Huston, JS; Packard, ABThe advancement of positron emission tomography (PET) depends on the development of new radiotracers that will complement 18F-FDG. Copper-64 (64Cu) is a promising PET radionuclide, particularly for antibody-targeted imaging, but the high in vivo lability of conventional chelates has limited its clinical application. The objective of this work was to evaluate the novel chelating agent SarAr (1-N-(4-aminobenzyl)-3, 6,10,13,16,19-hexaazabicyclo[6.6.6] eicosane-1,8-diamine) for use in developing a new class of tumor-specific 64Cu radiopharmaceuticals for imaging neuroblastoma and melanoma. The anti-GD2 monoclonal antibody (mAb) 14.G2a, and its chimeric derivative, ch14.18, target disialogangliosides that are overexpressed on neuroblastoma and melanoma. Both mAbs were conjugated to SarAr using carbodiimide coupling. Radiolabeling with 64Cu resulted in >95% of the 64Cu being chelated by the immunoconjugate. Specific activities of at least 10 μCi/μg (1 Ci = 37 GBq) were routinely achieved, and no additional purification was required after 64Cu labeling. Solid-phase radioimmunoassays and intact cell-binding assays confirmed retention of bioactivity. Biodistribution studies in athymic nude mice bearing s.c. neuroblastoma (IMR-6, NMB-7) and melanoma (M21) xenografts showed that 15–20% of the injected dose per gram accumulated in the tumor at 24 hours after injection, and only 5–10% of the injected dose accumulated in the liver, a lower value than typically seen with other chelators. Uptake by a GD2-negative tumor xenograft was significantly lower (<5% injected dose per gram). MicroPET imaging confirmed significant uptake of the tracer in GD-2-positive tumors, with minimal uptake in GD-2-negative tumors and nontarget tissues such as liver. The 64Cu-SarAr-mAb system described here is potentially applicable to 64Cu-PET imaging with a broad range of antibody or peptide-based imaging agents. © 2007, National Academy of Sciences
- ItemSynthesis of a new cage ligand, SarAr, and its complexation with selected transition metal ions for potential use in radioimaging(Royal Society of Chemistry, 2001-07-12) Di Bartolo, NM; Sargeson, AM; Donlevy, TM; Smith, SVA new hexaazamacrobicyclic cage ligand, 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (SarAr) has been designed for conjugation to proteins. SarAr was synthesised and characterised by microanalyses, 1H NMR and electrospray mass spectrometry. The complexation of selected transition metal ions (Cu(II), Ni(II) and Co(II) at 10−6 M) by SarAr was complete within 30 min over pH 6 to 8. The [64Cu(SarAr)]2+ complex was investigated with a view to applications in radioimaging. The [64Cu(sar)]2+ complex was found to be stable in human plasma for at least 174 h and biodistribution studies in mice, showed that the [64Cu(SarAr)]2+complex was rapidly excreted through the renal system unlike the free 64Cu2+. Overall, the simple synthesis, ready complexation behaviour of SarAr, the kinetic inertness of the [Cu(SarAr)]2+ complex to dissociation of 64Cu and its facile elimination from mice make it an attractive prospect for use in nuclear medicine. © The Royal Society of Chemistry 2001
- ItemSynthesis of hexa aza cages, SarAr-NCS and AmBaSar and a study of their metal complexation, conjugation to nanomaterials and proteins for application in radioimaging and therapy(Royal Society of Chemistry, 2013-07-01) Mume, E; Asad, A; Di Bartolo, NM; Kong, L; Smith, C; Sargeson, AM; Price, RA novel hexa aza cage, N1-(4-isothiocyanatobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine (SarAr-NCS) was synthesized in good yield and characterized by 1H NMR and electrospray mass spectrometry. A new method for the synthesis of the related N1-(4-carboxybenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine (AmBaSar) using the p-carboxybenzaldehyde is reported. The complexation of Cu2+, Co2+ and Zn2+ by the two ligands over a range of pHs was found to be similar to the parent derivative SarAr. SarAr-NCS was conjugated to both silica particles (≈90 nm diam.) and the model B72.3 murine antibody. The SarAr-NCSN-silica particles were radiolabeled with Cu2+ doped 64Cu and the number of ligands conjugated was calculated to be an average of 7020 ligands per particle. Conjugation of SarAr-NCS to the B72.3 antibody was optimized over a range of conditions. The SarAr-NCSN-B72.3 conjugate was stored in buffer and as a lyophilized powder at 4 °C over 38 days. Its radiolabeling efficiency, stability and immunoreactivity were maintained. The development of a high yielding synthesis of SarAr-NCS should provide an entry point for a wide range of Cu and Zn radiometal PET imaging agents and potentially radiotherapeutic agents with 67Cu. © 2013, The Royal Society of Chemistry.