Browsing by Author "Sani, MA"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism(Royal Society of Chemistry, 2012-01-01) Fernandez, DI; Le Brun, AP; Whitwell, TC; Sani, MA; James, M; Separovic, FThe membrane interactions of the antimicrobial peptide aurein 1.2 were studied using a range of biophysical techniques to determine the location and the mechanism of action in DMPC (dimyristoylphosphatidylcholine) and DMPC/DMPG (dimyristoylphosphatidylglycerol) model membranes that mimic characteristics of eukaryotic and prokaryotic membranes, respectively. Neutron reflectometry and solid-state NMR revealed subtle changes in membrane structure caused by the peptide. Quartz crystal microbalance with dissipation, vesicle dye leakage and atomic force microscopy measurements were used to investigate the global mode of peptide interaction. Aurein 1.2 displayed an enhanced interaction with the anionic DMPC/DMPG membrane while exhibiting primarily a surface interaction with both types of model membranes, which led to bilayer disruption and membrane lysis. The antimicrobial peptide interaction is consistent with the carpet mechanism for aurein 1.2 with discrete structural changes depending on the type of phospholipid membrane. © 2012, Royal Society of Chemistry
- ItemThe membrane activity of the antimicrobial peptide caerin 1.1 is pH dependent(Science Direct, 2023-03-21) Sani, MA; Le Brun, AP; Rajput, S; Attard, T; Separovic, FAntimicrobial peptides are an important class of membrane-active peptides that can provide alternatives or complements to classic antibiotics. Among the many classes of AMPs, the histidine-rich family is of particular interest since they may induce pH-sensitive interactions with cell membranes. The AMP caerin 1.1 (Cae-1), from Australian tree frogs, has three histidine residues, and thus we studied the pH dependence of its interactions with model cell membranes. Using NMR spectroscopy and molecular dynamics simulations, we showed that Cae-1 induced greater perturbation of the lipid dynamics and water penetrations within the membrane interior in an acidic environment compared with physiological conditions. Using 31P solid-state NMR, the packing, chemical environment, and dynamics of the lipid headgroup were monitored. 2H solid-state NMR showed that Cae-1 ordered the acyl chains of the hydrophobic core of the bilayer. These results supported the molecular dynamics data, which showed that Cae-1 was mainly inserted within the lipid bilayer for both neutral and negatively charged membranes, with the charged residues pulling the water and phosphate groups inward. This could be an early step in the mechanism of membrane disruption by histidine-rich antimicrobial peptides and indicated that Cae-1 acts via a transmembrane mechanism in bilayers of neutral and anionic phospholipid membranes, especially in acidic conditions. © 2023 Elsevier B.V.