Browsing by Author "Sakata, H"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemElectromagnon and phonon excitations in multiferroic TbMnO3(Americal Physical Society, 2012-07-30) Rovillain, P; Liu, J; Cazayous, M; Gallais, Y; Measson, MA; Sakata, H; Sacuto, AWe have performed Raman measurements on a TbMnO3 single crystal under magnetic field along the three crystallographic directions. The flip of the spin spiral plane creates an electromagnon excitation. In addition to the electromagnons induced by the Heisenberg coupling, we have detected the electromagnon created by the Dzyaloshinskii-Moriya interaction along the c axis. We have identified all the vibrational modes of TbMnO3. Their temperature dependencies show that only one phonon observed along the polarization axis is sensitive to the ferroelectric transition. This mode is tied to the Tb3+ ion displacements that contribute to the ferroelectric polarization. © 2012, American Physical Society.
- ItemElectromagnons in multiferroics probed by Raman light scattering comparison to neutron scattering investigations(Australian Institute of Nuclear Science and Engineering, 2012-11-15) Rovillain, P; Graham, PJ; Reynolds, N; Narayanan, N; Gallis, Y; Sacuto, A; Measson, MA; Sakata, H; McIntyre, GJ; Mulders, AM; Ulrich, C; Cazayous, MIn multiferroic materials the two antagonistic effects, magnetic and ferroelectric orders, exist simultaneously. The switching of these orders is known as magnetoelectric coupling. Thereby, magnetoelectric materials can potentially be used to control spins or electric polarization with the application of an external electric or magnetic field, respectively. This makes them promising candidates for applications in spintronics or magnonics that use magnetic excitations for information processing. BiFe03, is the rare case where both orders coexist at room temperature. Using Raman scattering, we show that in BiFe03 the spin-wave energy can be tuned electrically by over 30%, in a non-volatile way with virtually no power dissipation. In TbMnO3 (and RMn2O5) the coupling of the orders gives rise to a hybrid excitation: the electromagnon. Electromagnons are spin wave excitations which possess an electric dipole. We have identified the magnetic excitation underneath the electromagnon by comparison with neutron measurement and further the phonon mode at the origin of the dipole activity. We have extended our investigations to Raman scattering and inelastic neutron scattering on DyMn03. The combination of both techniques offers the opportunity to obtain more information on the electromagnetic interaction in this type of multiferroic material.