Browsing by Author "Sainio, S"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemDopant distribution in co-free high-energy layered cathode materials(American Chemical Society, 2019-11-21) Mu, L; Zhang, R; Kan, WH; Zhang, Y; Li, LX; Kuai, C; Zydlewski, B; Rahman, MM; Sun, CJ; Sainio, S; Avdeev, M; Nordlund, D; Xin, HL; Lin, FThe practical implementation of Co-free, LiNiO2-derived cathodes has been prohibited by their poor cycle life and thermal stability, resulting from the structural instability, phase transformations, reactive surfaces, and chemomechanical breakdown. With the hierarchical distribution of Mg/Ti dual dopants in LiNiO2, we report a Co-free layered oxide that exhibits enhanced bulk and surface stability. Ti shows a gradient distribution and is enriched at the surface, whereas Mg distributes homogeneously throughout the primary particles. The resulting Mg/Ti codoped LiNiO2 delivers a material-level specific energy of ∼780 W h/kg at C/10 with 96% retention after 50 cycles. The specific energy reaches ∼680 W h/kg at 1C with 77% retention after 300 cycles. Furthermore, the Mg/Ti dual dopants improve the rate capability, thermal stability, and self-discharge resistance of LiNiO2. Our synchrotron X-ray, electron, and electrochemical diagnostics reveal that the Mg/Ti dual dopants mitigate phase transformations, reduce nickel dissolution, and stabilize the cathode–electrolyte interface, thus leading to the favorable battery performance in lithium metal and graphite cells. The present study suggests that engineering the dopant distribution in cathodes may provide an effective path toward lower cost, safer, and higher energy density Co-free lithium batteries. © 2019 American Chemical Society
- ItemMechanochemically enabled metastable niobium tungsten oxides(American Chemical Society, 2024-04-08) Raji-Adefila, B; Wang, Y; Ding, Y; Avdeev, M; Outka, A; Gonzales, H; Engelstad, K; Sainio, S; Nordlund, D; Kan, WH; Zhou, S; Chen, DCMetastable compounds have greatly expanded the synthesizable compositions of solid-state materials and have attracted enormous amounts of attention in recent years. Especially, mechanochemically enabled metastable materials synthesis has been very successful in realizing cation-disordered materials with highly simple crystal structures, such as rock salts. Application of the same strategy for other structural types, especially for non-close-packed structures, is peculiarly underexplored. Niobium tungsten oxides (NbWOs), a class of materials that have been under the spotlight because of their diverse structural varieties and promising electrochemical and thermoelectric properties, are ideally suited to fill such a knowledge gap. In this work, we develop a new series of metastable NbWOs and realize one with a fully cation-disordered structure. Furthermore, we find that metastable NbWOs transform to a cation-disordered cubic structure when applied as a Li-ion battery anode, highlighting an intriguing non-close-packed-close-packed conversion process, as evidenced in various physicochemical characterizations, in terms of diffraction, electronic, and vibrational structures. Finally, by comparing the cation-disordered NbWO with other trending cation-disordered oxides, we raise a few key structural features for cation disorder and suggest a few possible research opportunities for this field. © 2024 American Chemical Society.
- ItemOver‐stoichiometric metastabilization of cation‐disordered rock salts(Wiley, 2023-12-21) Wang, Y; Outka, A; Takele, WM; Avdeev, M; Sainio, S; Liu, R; Kee, V; Choe, W; Raji‐Adefila, B; Nordlund, D; Zhou, S; Kan, WH; Habteyes, TG; Chen, DCCation‐disordered rock salts (DRXs) are well known for their potential to realize the goal of achieving scalable Ni‐ and Co‐free high‐energy‐density Li‐ion batteries. Unlike in most cathode materials, the disordered cation distribution may lead to more factors that control the electrochemistry of DRXs. An important variable that is not emphasized by research community is regarding whether a DRX exists in a more thermodynamically stable form or a more metastable form. Moreover, within the scope of metastable DRXs, over‐stoichiometric DRXs, which allow relaxation of the site balance constraint of a rock salt structure, are particularly underexplored. In this work, these findings are reported in locating a generally applicable approach to “metastabilize” thermodynamically stable Mn‐based DRXs to metastable ones by introducing Li over‐stoichiometry. The over‐stoichiometric metastabilization greatly stimulates more redox activities, enables better reversibility of Li deintercalation/intercalation, and changes the energy storage mechanism. The metastabilized DRXs can be transformed back to the thermodynamically stable form, which also reverts the electrochemical properties, further contrasting the two categories of DRXs. This work enriches the structural and compositional space of DRX families and adds new pathways for rationally tuning the properties of DRX cathodes. © 1999-2024 John Wiley & Sons, Inc or related companies.
- ItemStructural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries(American Chemical Society, 2020-03-04) Mu, L; Kan, WH; Kuai, C; Yang, Z; Li, LX; Sun, CJ; Sainio, S; Avdeev, M; Nordlund, D; Lin, FDoping chemistry has been regarded as an efficient strategy to overcome some fundamental challenges facing the “no-cobalt” LiNiO2 cathode materials. By utilizing the doping chemistry, we evaluate the battery performance and structural/chemical reversibility of a new no-cobalt cathode material (Mg/Mn-LiNiO2). The unique dual dopants drive Mg and Mn to occupy the Li site and Ni site, respectively. The Mg/Mn-LiNiO2 cathode delivers smooth voltage profiles, enhanced structural stability, elevated self-discharge resistance, and inhibited nickel dissolution. As a result, the Mg/Mn-LiNiO2 cathode enables improved cycling stability in lithium metal batteries with the conventional carbonate electrolyte: 80% capacity retention after 350 cycles at C/3, and 67% capacity retention after 500 cycles at 2C (22 °C). We then take the Mg/Mn-LiNiO2 as the platform to investigate the local structural and chemical reversibility, where we identify that the irreversibility takes place starting from the very first cycle. The highly reactive surface induces the surface oxygen loss, metal reduction reaching the subsurface, and metal dissolution. Our data demonstrate that the dual dopants can, to some degree, mitigate the irreversibility and improve the cycling stability of LiNiO2, but more efforts are needed to eliminate the key challenges of these materials for battery operation in the conventional carbonate electrolyte. © 2020 American Chemical Society