Browsing by Author "Rutlidge, H"
Now showing 1 - 20 of 30
Results Per Page
Sort Options
- ItemCave monitoring to constrain the paleoclimate interpretation of δ18O proxy in speleothems from semi-arid areas(University of New South Wales and Australian Nuclear Science and Technology Organisation, 2015-07-09) Markowska, M; Baker, AA; Andersen, MS; Jex, CN; Cuthbert, MO; Rau, GC; Graham, PW; Rutlidge, H; Mariethoz, G; Marjo, CE; Treble, PC; Edwards, NNot supplied to the ANSTO Library.
- ItemCave stalagmites as records of past recharge frequency in semi-arid Australia(National Centre for Groundwater Research And Training, 2015-11-03) Markowska, M; Baker, AA; Andersen, MS; Rutlidge, H; Jex, CN; Cuthbert, MO; Rau, GC; Adler, L; Graham, PW; Mariethoz, G; Marjo, CE; Treble, PCUnderstanding past variability in groundwater recharge over recent time scales (0 – 10 ka) in Australia is essential for future sustainable groundwater management in a changing climate. Currently, there are limited data about past infiltration rates and their relationship to environmental controls that dominate recharge variability. Speleothem (cave precipitates) records may provide a new approach to understanding past infiltration (i.e. recharge rates), in addition to traditional interpretations of connectivity between climate and the hydrological cycle, in drier parts of Australia. In this study we used Cathedral Cave, (SE Australia) located in a temperate semi-arid climate, as a natural laboratory to investigate cave infiltration rates and the climate-karst-cave interactions driving the isotopic (δ18O) and chemical variability in modern drip water. These findings were then used to interpret the δ18O stalagmite record from two modern speleothems growing during the last ~50 years. Modern drip water results showed that the δ18O composition was enriched by up to 2.77 ‰ relative to annually weighted mean rainfall. Isotopically lighter δ18O occurred during infiltration events, followed by subsequent isotopic enrichment as evaporation in the unsaturated zone fractionated δ18O of stored water. Drip rate monitoring revealed that larger events leading to infiltration were infrequent (0 – 3 a-1) and the ‘effectiveness’ of these infiltration events was controlled by antecedent moisture conditions in the soil zone. In drier climatic zones, evaporation drives the enrichment of δ18O in the unsaturated zone, allowing periods of infiltration to be identified from the stable isotopic composition of drip waters. Our findings are important for interpreting speleothem records from regions with infrequent recharge and high evaporation rates. Such records are likely to contain evidence of past infiltration events moderated by an evaporation signal, allowing records of paleo-recharge to be reconstructed for drier climate regions of Australia.
- ItemChanges in global groundwater organic carbon driven by climate change and urbanization(Springer Nature, 2020-03-09) McDonough, LK; Santos, IR; Andersen, MS; O'Carroll, DM; Rutlidge, H; Meredith, KT; Oudone, PP; Bridgeman, J; Gooddy, DC; Sorensen, JPR; Lapworth, DJ; MacDonald, AM; Ward, J; Baker, AAClimate change and urbanization can increase pressures on groundwater resources, but little is known about how groundwater quality will change. Here, we use a global synthesis (n = 9,404) to reveal the drivers of dissolved organic carbon (DOC), which is an important component of water chemistry and substrate for microorganisms that control biogeochemical reactions. Dissolved inorganic chemistry, local climate and land use explained ~ 31% of observed variability in groundwater DOC, whilst aquifer age explained an additional 16%. We identify a 19% increase in DOC associated with urban land cover. We predict major groundwater DOC increases following changes in precipitation and temperature in key areas relying on groundwater. Climate change and conversion of natural or agricultural areas to urban areas will decrease groundwater quality and increase water treatment costs, compounding existing constraints on groundwater resources. © 2020, The Author(s)
- ItemChanges in groundwater dissolved organic matter character in a coastal sand aquifer due to rainfall recharge(Elsevier, 2020-02-01) McDonough, LK; O'Carroll, DM; Meredith, KT; Andersen, MS; Brügger, C; Huang, HX; Rutlidge, H; Behnke, MI; Spencer, RGM; McKenna, AM; Marjo, CE; Oudone, PP; Baker, AADissolved organic matter (DOM) in groundwater is fundamentally important with respect to biogeochemical reactions, global carbon cycling, heavy metal transport, water treatability and potability. One source of DOM to groundwater is from the transport of organic matter from the vadose zone by rainfall recharge. Changes in precipitation patterns associated with natural climate variability and climate change are expected to alter the load and character of organic matter released from these areas, which ultimately impacts on groundwater quality and DOM treatability. In order to investigate potential changes in groundwater DOM character after rainfall recharge, we sampled shallow groundwater from a coastal peat-rich sand aquifer in New South Wales, Australia, during an extended period of low precipitation (average daily precipitation rate < 1.6 mm day−1 over the 8 months prior to sampling), and after two heavy precipitation events (84 mm day−1 and 98 mm day−1 respectively). We assess changes in DOM composition after correcting for dilution by a novel combination of two advanced analytical techniques: liquid chromatography organic carbon detection (LC-OCD) and negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We also assess changes in water chemistry pre- and post-rainfall. Post-rainfall, we show that the dilution-corrected amount of highly aromatic DOM molecular formulae (i.e. those categorised into the groups polyphenolics and condensed aromatics) were 1.7 and 2.0 times higher respectively than in pre-rainfall samples. We attribute this to the flushing of peat-derived DOM from buried organic material into the groundwater. We also identify that periods of low precipitation can lead to low hydrophilic/HOC ratios in groundwater (median = 4.9, n = 14). Redundancy analysis (RDA) was used to compare the HOC fraction with FT-ICR MS compound groups. We show that HOC has a more aromatic character in pre-rainfall samples, and is less similar to the aromatic groups in post-rainfall samples. This suggests that the decline in water-borne hydrophobics observed post-rainfall could be associated with preferential adsorption of the hydrophobic aromatic DOM, making post-rainfall samples less treatable for potable water supply. Post-rainfall we also observe significant increases in arsenic (leading to concentrations greater than 3 times the World Health Organisation drinking water limit of 10 μg / L). Increases in coastal rainfall due to climate change may therefore alter the composition of groundwater DOM in coastal peatland areas in ways that may impact DOM bioavailability, and increase arsenic concentrations, reducing the ease of water treatment for human consumption. To the best of our knowledge, this is the first study to identify the chemical and molecular changes of shallow groundwater DOM pre-rainfall and post-rainfall in a sedimentary organic carbon rich environment through multiple analytical techniques. © 2019 Elsevier Ltd
- ItemCharacterisation and controls on mineral-sorbed organic matter from a variety of groundwater environments(EarthArXiv, 2019-12-13) Oudone, PP; Rutlidge, H; Andersen, MS; O'Carroll, DM; Cheong, S; Meredith, KT; McDonough, LK; Marjo, CE; Baker, AADetailed investigations into natural groundwater organic matter (OM) as carbon sources or sinks in the natural carbon cycle are generally limited. Groundwater OM concentration and composition is altered by biodegradation and sorption to minerals. In the saturated zone of an aquifer, dissolved organic matter (DOM) may represent a significant fraction of the natural groundwater dissolved organic carbon (DOC) pool, therefore understanding how mineral sorption influences OM will contribute to our understanding of how DOC is processed in groundwater. In this study we investigate the dominant fractions of natural DOC in groundwater and the extent of sorption on three common minerals found in the environment: iron-oxide coated sand, calcite and quartz sand. DOM sorption on these minerals was studied using groundwaters from three different geological environments in New South Wales, Australia: Anna Bay (quartz-sand coastal aquifer); Maules Creek (alluvial gravel and clay aquifer); and Wellington (alluvial karst limestone aquifer). Each groundwater and surface sample were characterised before and after sorption using size exclusion liquid chromatography with organic carbon detection (LC-OCD). Analysis revealed that humic substances (HS) are the dominant (13 – 70%) fraction of natural groundwater DOC. HS sorption on iron-oxide coated sand was higher than that on calcite and quartz sand, respectively while sorption on the calcite was also higher than on quartz sand. In shallow-sandy aquifer groundwater, due to less DOC sorption in sandy environment (Anna Bay), DOC concentration was found to be the highest compared to that from karst and other alluvial boreholes from Maules Creek and Wellington. HS sorption increases with the mineral mass and DOC concentration indicating that DOC sorption to the mineral surface did not reach saturation under the study conditions. Only the high-DOC alluvial groundwater produced significant sorption to each mineral phase and of the chemical fractions present (85% of 72 batch systems that HS sorption was found). Multiple linear regression showed that mineral mass, mineral type, depth of groundwater sample, DOC concentration, aqueous Fe2+ concentration and DOM aromaticity are the controlling factors of DOC sorption in the various groundwater environments. The regression analysis showed sorption decreases with depth, which could be because of DOC sorption along the groundwater flow path, resulting in less DOC at depth. The multiple linear regression predicts less DOC (HS) sorption in quartz sand system, agreeing with laboratory sorption results. HS sorption also correlated with aromaticity suggesting the chemical character of HS will control the degree of mineral sorption. The model also indicated that DOC sorption is negatively correlated with dissolved Fe2+ concentration in water samples presumably due to redox condition which is under anoxic environment iron oxide became electron acceptors under the process of DOC biodegradation leaving higher Fe2+ concentration and less available DOC for sorption.
- ItemCharacterisation of groundwater dissolved organic matter using LC-OCD: implications for water treatment(Elsevier, 2021-01-01) Rutlidge, H; McDonough, LK; Oudone, PP; Andersen, MS; Meredith, KT; Chinu, K; Peterson, MA; Baker, AAThe polarity and molecular weight of dissolved organic matter (DOM) is an important factor determining the treatability of water for domestic supply. DOM in surface water and groundwater is comprised of a mixture of carbon with varying molecular weight ranges, with its composition driven by DOM sources and processing. Here, we present the largest dataset of chromatographic DOM in surface and groundwater samples (n = 246) using liquid chromatography organic carbon detection (LCsingle bondOCD). Our data represents four categories (surface water, hyporheic zone water, local groundwater, and regional groundwater) from five different sites across Australia. In all environments, high molecular weight hydrophilic DOM such as biopolymers (BP) and humic substances (HS) are present in surface waters and are processed out of groundwater as it moves from surface water and hyporheic zones into shallow local groundwater and deeper regional groundwaters. This results in a higher percentage of low molecular weight neutrals (LMWN) and hydrophobic organic carbon (HOC) in deeper regional groundwaters. Our findings indicate that the presence of sedimentary organic matter strongly influence the character of surface and groundwater DOM, resulting in groundwater with higher HS aromaticity and molecular weight, and reduced percentage of LMWNs. We also observe highly variable hydrophilic / HOC ratios in groundwater at all sites, with 9.60% and 25.64% of samples at sites containing sedimentary peat layers and non-sedimentary peat sites respectively containing only hydrophilic dissolved organic carbon (DOC). We identify average hydrophilic / HOC ratios of 4.35 ± 3.76 and 7.53 ± 5.32 at sites containing sedimentary peat layers and non-sedimentary peat sites respectively where both hydrophilic DOC and HOC are present. Overall our results suggest that fractured rock and alluvial aquifers in sedimentary organic carbon poor environments may contain DOC which is better suited to ozonation, biologically activated carbon filtration powdered activated carbon, suspended ion exchange treatment or magnetic ion exchange resin since DOC is more hydrophilic and of lower molecular weight and lower aromaticity. Aquifers located near sedimentary organic matter layers may benefit from pre-treatment by coagulation/flocculation, sedimentation and sand filtration which have high removal efficiency for high molecular weight and polar compounds. © 2021 Elsevier Ltd.
- ItemCharacterisation of shallow groundwater dissolved organic matter in aeolian, alluvial and fractured rock aquifers(Elsevier, 2020-03-15) McDonough, LK; Rutlidge, H; O’Carroll, DM; Andersen, MS; Meredith, KT; Benkhe, MI; Spencer, RGM; McKenna, AM; Marjo, CE; Oudone, PP; Baker, AAGroundwater organic matter is processed within aquifers through transformations such as the adsorption of dissolved organic matter (DOM) to minerals and biodegradation. The molecular character of DOM varies according to its source and this can impact its bioavailability and reactivity. Whilst the character of DOM in riverine and oceanic environments is increasingly well understood, the sources, character and ultimately the fate of groundwater DOM remains unclear. Here we examine groundwater DOM from contrasting hydrogeological settings in New South Wales, Australia. For the first time, we identify the distinct molecular composition of three groundwater DOM end-members including a modern terrestrial input, an aged sedimentary peat source, and an aged stable by-product pool. We also identify and characterise the processing pathway of DOM in semi-arid, low sedimentary organic carbon (OC) environments. Based on size exclusion chromatography, ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), isotopic analyses (13C, 14C and 3H) and principle component analysis (PCA), we show that in higher rainfall temperate coastal peatland environments, large amounts of aged sedimentary organic carbon can leach into groundwater resulting in higher molecular weight (500 g mol−1 < molecular weight > 1000 g mol−1) and highly aromatic groundwater DOM with high O/C ratios and low H/C ratios. We show that in semi-arid environments with low rainfall rates and high groundwater residence times, groundwater dissolved organic carbon (DOC) is processed into increasingly low molecular weight (<350 g mol−1), low aromaticity DOM with low O/C ratios and high H/C ratios by subsurface processing mechanisms such as biodegradation and adsorption. We provide the first comprehensive study of groundwater DOM characterisation based on multiple analytical techniques, and highlight the impact of source inputs and processing on groundwater DOM composition at a molecular level. Crown Copyright © 2020 Published by Elsevier Ltd
- ItemDissolved organic matter in the unsaturated zone: the view from the cave(American Geophysical Union (AGU), 2017-12-14) Baker, AA; Duan, W; Rutlidge, H; McDonough, LK; Oudone, PP; Meredith, KT; Andersen, MS; O'Carroll, DM; Coleborn, K; Treble, PCSoil organic matter content is typically a few percent of the total soil composition. Diffuse recharge can mobilise some of this soil-derived organic matter. While soil pore water dissolved organic matter (DOM) concentrations are up to 100 ppm, the resulting groundwater dissolved organic matter concentration is typically less than 2ppm. Dissolved organic matter transported from the soil can be both biodegraded and sorbed to minerals, and the relative importance of these two processes in the unsaturated zone is poorly understood. Caves in karstified limestone uniquely provide direct access to water percolating from the soil to the groundwater. Cave percolation waters can be analysed for their DOM concentration and character. This provides insights into the extent and type of biological and chemical processing of DOM during transport from the soil to the groundwater. We determine the concentration and characteristics of DOM in cave percolation waters using liquid chromatography (LC-OCD) and optical spectrophotometry (fluorescence and absorbance). We sample DOM from multiple caves in SE Australia (Cathedral Cave, Wellington; South Glory and Harrie Wood Caves, Yarrangobilly), permitting comparison of unsaturated zone DOM properties at different depths (up to 30m below land surface) and different climate zones (montane and temperate). We use caves with long-term hydrological monitoring programs so that DOM in waters of contrasting residence times can be compared. Additionally, we compare these cave percolation water DOM characteristics to those from local and regional groundwater, sampled from nearby wells. Our results will help improve our understanding of how DOM is processed from soil to groundwater, and is also relevant to speleothem scientists interested in using organic matter preserved in speleothems as a paleoclimate or paleoenvironmental proxy. Plain Language Summary When plants die, they break down to organic matter, which forms part of the soil. When this organic matter is washed out of the soil and into the subsurface, we know very little about what happens next. Partly it is because we can't see and measure what is happening. There is a solution. We can use caves as observatories. We can collect the organic matter in the water which enters the caves, and analyse it back in the laboratory. There, we can determine not only the cocntration of organic matter, but also its chemical composition. Why is this important? There's lot of organic matter in soil. But only one or two organic molecues per million water molecules are present in groundwater. Where does it all go? One idea is that it is used as food by subterranean microbes. Another is that is sorbed to minerals. By measuring the chemical composition of organic matter in cave drip waters, we can work out which is more important, and help understand why there is so little organic matter in groundwater.
- ItemDripwater organic matter and trace element geochemistry in a semi-arid karst environment: Implications for speleothem paleoclimatology(Elsevier, 2014-06-15) Rutlidge, H; Baker, AA; Marjo, CE; Andersen, MS; Graham, PW; Cuthbert, MO; Jex, CN; Rau, GC; Roshan, H; Markowska, M; Mariethoz, GA series of four short-term infiltration experiments which revealed hydrochemical responses relevant to semi-arid karst environments were carried out above Cathedral Cave, Wellington, New South Wales (NSW), Australia. Dripwater samples were collected at two sites for trace element and organic matter analysis. Organic matter was characterised using fluorescence and interpreted using a PARAFAC model. Three components were isolated that represented unprocessed, soil-derived humic-like and fulvic-like material, processed humic/fulvic-like material and tryptophan-like fluorescence. Principal Component Analysis (PCA) performed on the entire dataset comprising trace element concentrations and PARAFAC scores revealed two dominant components that were identified as soil and limestone bedrock. The soil component was assigned based on significant contributions from the PARAFAC scores and additionally included Ba, Cu, Ni and Mg. The bedrock component included the expected elements of Ca, Mg and Sr as well as Si. The same elemental behaviour was observed in recent stalagmite growth collected from the site. Our experiments demonstrate that existing paleoclimate interpretations of speleothem Mg and Sr, developed in regions of positive water balance, are not readily applicable to water limited environments. We provide a new interpretation of trace element signatures unique to speleothems from water limited karst environments. © 2014, Elsevier Ltd.
- ItemThe effect of microbial activity and adsorption processes on groundwater dissolved organic carbon character and concentration(American Geophysical Union (AGU), 2017-12-14) McDonough, LK; Oudone, PP; Rutlidge, H; Meredith, KT; O'Carroll, DM; Andersen, MS; Baker, AABalancing the terrestrial global carbon budget has proven to be a significant challenge. Whilst the movement of carbon in the atmosphere, rivers and oceans has been extensively studied, the potential for groundwater to act as a carbon source or sink through both microbial activity and sorption to and from mineral surfaces, is poorly understood. To investigate the biodegradable component of groundwater dissolved organic carbon (DOC), groundwater samples were collected from multiple coastal and inland sites. Water quality parameters such as pH, electrical conductivity, temperature, dissolved oxygen were measured in the field. Samples were analysed and characterised for their biodegradable DOC content using spectrofluorometric and Liquid Chromatography-Organic Carbon Detection (LC-OCD) techniques at set intervals within a 28 day period. Further to this, we performed laboratory sorption experiments on our groundwater samples using different minerals to examine the effect of adsorption processes on DOC character and concentration. Calcium carbonate, quartz and iron coated quartz were heated to 400ºC to remove potential carbon contamination, and then added at various known masses (0 mg to 10 g) to 50 mL of groundwater. Samples were then rotated for two hours, filtered at 0.2 μm and analysed by LC-OCD. This research forms part of an ongoing project which will assist in identifying the factors affecting the mobilisation, transport and removal of DOC in uncontaminated groundwater. By quantifying the relative importance of these processes, we can then determine whether the groundwater is a carbon source or sink. Importantly, this information will help guide policy and identify the need to include groundwater resources as part of the carbon economy.
- ItemEvaporative cooling of speleothem drip water(Nature Publishing Group, 2014-06-04) Cuthbert, MO; Rau, GC; Andersen, MS; Roshan, H; Rutlidge, H; Marjo, CE; Markowska, M; Jex, CN; Graham, PW; Mariethoz, G; Acworth, RI; Baker, AAThis study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as delta O-18, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. © 2014, Nature Publishing Group.
- ItemExtent and characterisation of natural groundwater organic matter sorption onto minerals(Copernicus GmbH, 2019-04-08) Oudone, PP; Mustonen, O; Marjo, CE; Meredith, KT; McDonough, LK; Rutlidge, H; Andersen, MS; O'Carroll, DM; Baker, AARivers and aquifers have been proven to be physiochemically connected. Despite their interaction, organic matter (OM) concentration in groundwater is much lower than rivers. One might ask where it goes. For example, is sorption responsible for this missing fraction? If so, what components of OM are utilised by groundwater sorption to the minerals? This research aims to quantify the sorption of natural groundwater DOC over a range of groundwater and surface water environments in South East Australia. Batch experiments were set up by adding 40 ml of filtered (0.22 m) sample to a range of masses of three types of sterilised minerals: iron coated sand, quartz sand and calcium carbonate. The systems were rotated for 1 hour under controlled conditions before analysis by Liquid Chromatography-Organic Carbon Detection (LC-OCD) for the aqueous phase and X-ray Photoelectron Spectroscopy (XPS) for the solid phase. Size-exclusion chromatography using LC-OCD is used to determine the remaining chemical fractions in solution. LC-OCD separates DOC into biopolymers (»20,000 g/mol), humic substances ( 1000 g/mol), building blocks (300-500 g/mol), low molecular weight neutrals (<350 g/mol) and low molecular weight acids (350 g/mol). The technique also provides measures of humic substances aromaticity and relative molecular weight. XPS is used to characterise the surface chemistry of the adsorbed organic layer in terms of the relative carbon, nitrogen, and oxygen content, and the types of chemical bonding. The results of solid-phase XPS is compared with the remaining chemical fractions in solution characterised by LC-OCD. LC-OCD results showed that humic substances were highest in concentration in the groundwater DOC compared to other fractions (13-65%) and was the significant sorbing fraction for all mineral types and water samples. The sorption extent ranges between 4-61%. This sorption was highest for iron coated sand (8-61%) followed by calcium carbonate (10-35%) and then quartz sand (4-22%). XPS showed that more sorbed organics (O, C and N) were found on iron coated sand and calcium carbonate compared to quartz sand. The extent of humic substance sorption was found proportional to its aromaticity and molecular weight for all mineral types and water samples. In conclusion, even though sediment types influence groundwater DOC sorption, the result suggests that groundwater DOM sorption plays an important role in the missing fraction of groundwater DOC (31-9/4%). © Author(s) 2019. CC Attribution 4.0 license.
- ItemFactors affecting dissolved organic carbon in coastal groundwater systems(National Centre for Groundwater Research And Training, 2017-07-11) McDonough, LK; O'Carroll, DM; Andersen, MS; Meredith, KT; Rutlidge, H; Oudone, PP; Marjo, CE; Baker, AABalancing the terrestrial global carbon budget has proven to be a significant challenge. Whilst the movement of carbon in the atmosphere and riverine waters has been extensively studied, the potential for organic carbon to desorb/adsorb from mineral surfaces and act as a groundwater organic carbon source/sink, is poorly understood. To investigate the biodegradable component of groundwater dissolved organic carbon (DOC), groundwater samples were collected from six wells located on Rottnest Island, WA. Wells were selected to cover a range of DOC ages and concentrations in a carbonate aquifer. Water quality parameters such as pH, electrical conductivity, temperature, dissolved oxygen were measured in the field. Samples were analysed for their biodegradable DOC content using spectrofluorometric techniques at set intervals within a 28 day period. Further to this, we examined the conditions and processes affecting DOC at a coastal wetland in Anna Bay, NSW. Four multilevel samplers (MLS’s) were installed in a transect with 1m spacing, with a distance of up to 3 m from the wetland edge. Two samples were taken from each MLS and analysed for DOC, dissolved inorganic carbon (DIC), anions and cations using LC-OCD, spectrofluorometry, UV-Vis and FIA techniques. This research forms part of an ongoing project which will assist in identifying the factors affecting the mobilisation, transport and removal of DOC in uncontaminated groundwater. By quantifying the processes, we can then determine whether the groundwater is a carbon source or sink. Importantly, this information will help guide policy and identify the need to include groundwater resources as part of the carbon economy.
- ItemGroundwater organic matter: carbon source or sink?(National Centre for Groundwater Research And Training, 2017-07-11) Rutlidge, H; Andersen, MS; O'Carroll, DM; Oudone, PP; McDonough, LK; Meredith, KT; Marjo, CE; Baker, AAThe natural environment plays a critical role in offsetting the anthropogenic carbon emissions. Despite the size of the global groundwater store the processes controlling the concentration and characteristics of organic matter in groundwater are poorly understood. Through a survey of global carbon concentrations, it is apparent that groundwater carbon concentrations are significantly lower than terrestrial (soil, sediment and river) concentrations. This indicates that terrestrial OM is biologically processed (and a potential source of inorganic carbon) or sorbed to mineral surfaces (a sink of carbon). This will be explored through an ARC Discovery research project which will investigate factors that determine groundwater organic matter concentration, how important is groundwater to the terrestrial carbon budget and under what conditions where groundwater is a carbon source or sink. This project is bringing together geochemists, ecologists, hydrologists and anyone with an interest in organic matter in groundwater. Specifically, the amount of colloid and dissolved organic matter present will be quantified, the rate and extent of biological processing, desorption and sorption will be investigated and the relative importance of each process to be determined. The processes that control organic matter in groundwater will be investigated at a range of field sites with differing surface soil, land cover, recharge type and hydrological properties. Preliminary results from various field sites has shown that sedimentary organic matter is mobilised as water flows through the hyporheic zone. The results from this project will provide guidelines for the management of groundwater resource as part of the carbon economy.
- ItemA groundwater recharge experiment in krast - Wellington Caves, NSW(International Association of Hydrogeologists, 2013-09-16) Andersen, MS; Baker, AA; Graham, PW; Rutlidge, H; Mariethoz, G; Roshan, H; Rau, GC; Markowska, M; Cuthbert, MOGroundwater recharge is a process which is inherently difficult to measure directly due to soil and sediment heterogeneity and the tendency for this to cause preferential flow. This often leads to groundwater recharge being estimated by indirect methods, such as remotely or by differences in the water balance, which frequently causes huge uncertainties in the estimates. Karst terrains with cave features, although notoriously heterogeneous, offer a rare opportunity to physically enter the subsurface and make direct observations. Cathedral Cave at Wellington Caves in NSW, Australia was used for a multiple tracer experiment to look a recharge processes as well as physical and chemical processes affecting speleothems formation. On four consecutive days, four water releases were applied to a 3 x 7 m soil patch 2-3 m above the cave ceiling. The applications varying from 800 to 1500 L corresponds to natural precipitation events of 40 to 70 mm, events which have been known to cause recharge into the caves in the past. The four different events were variably modified by adding deuterium (2H), a fluorescing tracer and ice to reduce the temperature. Inside the caves onset of recharge was measured by automatic drip rate monitoring and temperature loggers. In addition, discrete water samples were collected and analysed for stable water isotope composition, fluorescence and dissolved trace elements. A preliminary assessment of the cave observations suggest that. although ow was preferentially along fractures, considerable interaction with pore water in the rock matrix must have taken place to significantly dilute the tracer content of water sampled in the cave. To our knowledge this is the first time that is has been directly shown that water sampled during a recharge event is only fractionally water from that particular event. For the location of this study the result is surprising considering the short distance of 2-3 m between the soil surface and the cave ceiling. The results have significant implications for our understanding of karst hydrology as well as reconstruction of past recharge and climate conditions from cave speleothems.
- ItemInsights in groundwater organic matter from liquid chromatography-organic carbon detection(American Geophysical Union (AGU), 2017-12-14) Rutlidge, H; Oudone, PP; McDonough, LK; Andersen, MS; Baker, AA; Meredith, KT; O'Carroll, DMUnderstanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography – Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.
- ItemIsotopic and chromatographic fingerprinting of the sources of dissolved organic carbon in a shallow coastal aquifer(European Geosciences Union, 2020-04-30) Meredith, KT; Baker, AA; Andersen, MS; O'Carroll, DM; Rutlidge, H; McDonough, LK; Oudone, PP; Bryan, E; Zainuddin, NSThe terrestrial subsurface is the largest source of freshwater globally. The organic carbon contained within it and processes controlling its concentration remain largely unknown. The global median concentration of dissolved organic carbon (DOC) in groundwater is low compared to surface waters, suggesting significant processing in the subsurface. Yet the processes that remove this DOC in groundwater are not fully understood. The purpose of this study was to investigate the different sources and processes influencing DOC in a shallow anoxic coastal aquifer. Uniquely, this study combines liquid chromatography organic carbon detection with organic (δ13CDOC) carbon isotope geochemical analyses to fingerprint the various DOC sources that influence the concentration, carbon isotopic composition, and character with respect to distance from surface water sources, depth below surface, and inferred groundwater residence time (using 3H activities) in groundwater. It was found that the average groundwater DOC concentration was 5 times higher (5 mg L−1) than the global median concentration and that the concentration doubled with depth at our site, but the chromatographic character did not change significantly. The anoxic saturated conditions of the aquifer limited the rate of organic matter processing, leading to enhanced preservation and storage of the DOC sources from peats and palaeosols contained within the aquifer. All groundwater samples were more aromatic for their molecular weight in comparison to other lakes, rivers and surface marine samples studied. The destabilization or changes in hydrology, whether by anthropogenic or natural processes, could lead to the flux of up to 10 times more unreacted organic carbon from this coastal aquifer compared to deeper inland aquifers. © Author(s) 2020.
- ItemMolecular insights into the unique degradation trajectory of natural dissolved organic matter from surface to groundwater(Copernicus GmbH, 2021-04-19) McDonough, LK; Behnke, MI; Spencer, R; Marjo, CE; Andersen, MS; Meredith, KT; Rutlidge, H; Oudone, PP; O'Carroll, DM; McKenna, AM; Baker, AADissolved organic matter (DOM) comprises a large and complex range of molecules with varying mass, elemental arrangements, conformation, and polarity. These diverse molecules interact with the environment resulting in changes to their molecular character and reactivity over time. Significant advances in our understanding of the molecular character of reactive and recalcitrant DOM have been made throughout the past decade, largely due to the development of ultra-high resolution techniques such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This understanding, however, is almost entirely based on surface water environments. Here, we investigate how the molecular properties of DOM change due to reactions occurring in a groundwater environment over time. We use FT-ICR MS combined with liquid chromatography organic carbon detection (LC-OCD), fluorescence and radiocarbon (14C) dissolved organic carbon (DOC) for a range of groundwater DOM samples, including the oldest DOC reported from a site which is not impacted by sedimentary organic carbon inputs (25,310 ± 600 years BP). Our results indicate that polarity and nominal oxidation state of carbon (NOSC) play a major role in the reactivity of groundwater DOM, with a preferential removal of hydrophilic, high oxygen to carbon (O/C) ratio molecules over time (rs = 0.91, p = 2.4 x 10-6). We also note an increase in likely bio-produced molecules containing low numbers of O atoms in deep methanogenic groundwater environments. These molecular formulae appear to accumulate due to the prolonged anoxic conditions which would not be experienced by surface water DOM. The decline in NOSC with increasing average bulk groundwater DOC age contrasts with findings from marine environments where NOSC has been reported to increase over time. Furthermore, the proportion of specific molecular formulae which are stable in marine waters, decline in groundwater as 14CDOC decreases (rs = 0.68, p = 6.9 x 10-3) suggesting that current indicators of DOM degradation state derived from marine environments are not applicable to groundwater environments. Our research shows that the molecular character of reactive DOM in groundwater differs from that of surface water due to exposure to different environments and processing mechanisms, suggesting that it is the interaction between external environmental factors and intrinsic DOM molecular properties which control DOM recalcitrance.
- ItemNatural organic matter in goundwater: carbon source or sink?(European Geosciences Union, 2019-04-07) Rutlidge, H; McDonough, LK; Oudone, PP; Andersen, MS; Baker, AA; Meredith, KT; O'Carroll, DM; Marjo, CE; Mustonen, OCarbon plays an essential role in all biological processes on the earth and hence it is important to Mustin the environment. The concentration of organic matter in groundwater, with a global median of 1.0 mg C/L, is often significantly lower than in adjacent soil and surface waters. The likely processes that are responsible for this decrease are sorption to mineral surfaces and biological processing by microbes as water travels through sediments. While these processes have been quantified individually at different sites, they have not been investigated concurrently, and hence the relative importance of each process is unknown. Therefore, the role of organic matter processes in groundwater and in the terrestrial global carbon budget is unknown. To investigate this a series of laboratory-based experiments were conducted, in conjunction with the organic matter characterization of field samples by Liquid Chromatography-Organic Carbon Detection (LC-OCD). LC-OCD is a size-exclusion based chromatography technique that separates dissolved organic carbon into five fractions based on their mass, plus a hydrophobic fraction, which remains in the column. For the laboratory-based experiments, the amount of sorption onto pure mineral surfaces (quartz sand, iron-coated sand, and calcium carbonate), desorption from natural sediments and biological degradation was investigated at a range of different locations in New South Wales, Australia. The sites covered a range of different aquifer materials (coastal sands, river alluvium and fractured meta-basalts), land cover and recharge type. At each site, groundwater samples were collected from wells located with varying distance from surface water bodies for the subsequent laboratory experiments. The results showed that predominately the humics fraction was adsorbing onto the mineral surfaces and the low-molecular weight neutrals were being biologically degraded. For the desorption experiments several fractions desorbed with the humics and hydrophobic fraction being dominant. The amount of desorption increased with increasing salinity and increasing number of cycles of drying and wetting. The LC-OCD results of field samples indicated that proportionally, sorption is more dominant than biological degradation. Hence changing environmental conditions, such as increasing salinity and/or drier conditions, could lead to a release of sorbed carbon.
- ItemNatural organic matter in groundwater: carbon source or sink ?(Copernicus GmbH, 2019-04-08) Rutlidge, H; McDonough, LK; Oudone, PP; Andersen, MS; Baker, AA; Meredith, KT; O'Carroll, DM; Marjo, CM; Mustonen, OCarbon plays an essential role in all biological processes on the earth and hence it is important to Mustin the environment. The concentration of organic matter in groundwater, with a global median of 1.0 mg C/L, is often significantly lower than in adjacent soil and surface waters. The likely processes that are responsible for this decrease are sorption to mineral surfaces and biological processing by microbes as water travels through sediments. While these processes have been quantified individually at different sites, they have not been investigated concurrently, and hence the relative importance of each process is unknown. Therefore, the role of organic matter processes in groundwater and in the terrestrial global carbon budget is unknown. To investigate this a series of laboratory-based experiments were conducted, in conjunction with the organic matter characterization of field samples by Liquid Chromatography-Organic Carbon Detection (LC-OCD). LC-OCD is a size-exclusion based chromatography technique that separates dissolved organic carbon into five fractions based on their mass, plus a hydrophobic fraction, which remains in the column. For the laboratory-based experiments, the amount of sorption onto pure mineral surfaces (quartz sand, iron-coated sand, and calcium carbonate), desorption from natural sediments and biological degradation was investigated at a range of different locations in New South Wales, Australia. The sites covered a range of different aquifer materials (coastal sands, river alluvium and fractured meta-basalts), land cover and recharge type. At each site, groundwater samples were collected from wells located with varying distance from surface water bodies for the subsequent laboratory experiments. The results showed that predominately the humics fraction was adsorbing onto the mineral surfaces and the low-molecular weight neutrals were being biologically degraded. For the desorption experiments several fractions desorbed with the humics and hydrophobic fraction being dominant. The amount of desorption increased with increasing salinity and increasing number of cycles of drying and wetting. The LC-OCD results of field samples indicated that proportionally, sorption is more dominant than biological degradation. Hence changing environmental conditions, such as increasing salinity and/or drier conditions, could lead to a release of sorbed carbon.