Browsing by Author "Reynolds, JK"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Item3d transition metal complexes with a julolidine–quinoline based ligand: structures, spectroscopy and optical properties(Royal Society of Chemistry, 2015-12-07) Fanna, DJ; Zhang, YJ; Li, L; Karatchevtseva, I; Shepherd, ND; Azim, A; Price, JR; Aldrich-Wright, JR; Reynolds, JK; Li, FA Schiff base type ligand with the combination of the julolidine and the quinoline groups has been reported as a potential chemosensor in detecting the cobalt(II) ion among other heavy and transition metal ions in solution. However, no crystal structure of such a ligand with any metal ions has been reported. In this work, its complexation with 3d transition metal ions (Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)) has been investigated with five new complexes being synthesised, and spectroscopically and structurally characterised. [Mn2L2(CH3OH)2(CH3COO)2]•CH3OH (1) {HL (C22H21N3O) = ((E)-9-((quinolin-8-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol)} shows a dinuclear structure with two Mn : L : acetate (1 : 1 : 1) units bridged by two methanol molecules. [CoL2(NO3)]•CH3OH•H2O (2) and [NiL2]•H2O (3) exhibit mononuclear structures with a Co : L or Ni : L ratio of 1 : 2. [CuL(CH3COO)]•1/3CH3OH (4) demonstrates a mononuclear structure and the Cu ion has a square planar coordination polyhedron with a L ligand and a highly non-symmetrical acetate anion. [Zn2L2(CH3COO)2]•CH3OH (5) has two types of dinuclear units, both with two ZnL units bridged by two acetate anions but in three different bridging coordination modes. Their vibrational modes, absorption and photoluminescence properties have also been investigated. © 2016 The Partner Organisations
- ItemDinuclear complexes of europium(III) and gadolinium(III) ions with a julolidine–quinoline-based tridentate ligand(Taylor and Francis Online, 2016-06-13) Fanna, DJ; Zhang, YJ; Salih, A; Reynolds, JK; Li, FThe reaction of europium(III) or gadolinium(III) acetates with a Schiff base ligand {HL (C22H21N3O) = ((E)-9-((quinolin-8-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol)} in methanol affords two dinuclear complexes which have been characterized by powder X-ray diffraction, Raman spectroscopy, scanning electron microscope–electron dispersive spectroscopy, absorption and emission spectroscopies as well as single-crystal X-ray diffraction. [Eu2L2(CH3COO)4(CH3OH)2] (1) and [Gd2L2(CH3COO)4(CH3OH)2] (2) are iso-structures, each consisting of two M : L : CH3COO : CH3OH (1 : 1 : 1 : 1) units bridged by two acetate anions with the metal center in a distorted capped square antiprismatic coordination geometry. Their vibration modes, electronic structures, and photoluminescent properties are reported. © 2016 Taylor & Francis Group
- ItemA large spin-crossover [Fe4L4]8+ tetrahedral cage(Royal Society of Chemistry, 2015-05-20) Li, L; Saigo, N; Zhang, YJ; Fanna, DJ; Shepherd, ND; Clegg, JK; Zheng, RK; Hayami, S; Lindoy, LF; Aldrich-Wright, JR; Li, CG; Reynolds, JK; Harman, DG; Li, FA large discrete face-capped tetranuclear iron(II) cage, [Fe4L4](BF4)8·n(solvent), was synthesised via metal-ion directed self-assembly. The cage is formed from a rigid tritopic ligand that incorporates chelating imidazole-imine functional groups. The cage displays temperature induced spin-crossover and LIESST effects and is amongst the largest iron(II) tetrahedral cages with such properties reported. The synthesis, structure and magnetic properties of this new metallo-cage are presented. © 2015 The Royal Society of Chemistry