Browsing by Author "Reehuis, M"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
- ItemCompeting exchange interactions on the verge of a metal-insulator transition in the two-dimensional spiral magnet Sr3Fe2O7(Americal Physical Society, 2014-10-03) Kim, JH; Jain, A; Reehuis, M; Khaliullin, G; Peets, DC; Ulrich, C; Park, JT; Faulhaber, E; Hoser, A; Walker, HC; Adroja, DT; Walters, AC; Inosov, DS; Maljuk, A; Keimer, BWe report a neutron scattering study of the magnetic order and dynamics of the bilayer perovskite Sr 3 Fe 2 O 7 , which exhibits a temperature-driven metal-insulator transition at 340 K. We show that the Fe 4+ moments adopt incommensurate spiral order below T N =115 K and provide a comprehensive description of the corresponding spin-wave excitations. The observed magnetic order and excitation spectra can be well understood in terms of an effective spin Hamiltonian with interactions ranging up to third-nearest-neighbor pairs. The results indicate that the helical magnetism in Sr 3 Fe 2 O 7 results from competition between ferromagnetic double-exchange and antiferromagnetic superexchange interactions whose strengths become comparable near the metal-insulator transition. They thus confirm a decades-old theoretical prediction and provide a firm experimental basis for models of magnetic correlations in strongly correlated metals. © 2014, American Physical Society.
- ItemCrystallographic and magnetic structure study in SrCoO3-x by high resolution x-ray and neutron powder diffraction(Australian Institute of Physics, 2016-02-04) Chang, FF; Reehuis, M; Hester, JR; Avdeev, M; Xiang, F; Wang, X; Seidel, J; Ulrich, CTransition metal oxides (TMOs) represent a wide set of materials with a broad range of functionalities, including superconductivity, magnetism, and ferroelectricity, which can be tuned by careful choice of parameters such as strain, oxygen content, and applied electric and magnetic fields. This tunability makes TMO’s ideal candidate materials for use in developing novel information and energy technologies and SrCoO3 provides a particularly interesting system for investigation due to its propensity to form oxygen-vacancy-ordered structures as the oxygen content is decreased. The ties between structural and functional properties of this material are obvious as it undergoes simultaneously structural and magnetic phase transitions between two topotactic phases: from a ferromagnetic perovskite phase at SrCoO3.0 to the antiferromagnetic brownmillerite SrCoO2.5. In this study we have determined their crystallographic and magnetic structures of SrCoO2.50, SrCoO2.875, and cubic SrCoO3.00 using high resolution X-ray and neutron powder diffraction from 4 K to 600 K. The correct structure of oxygen-deficient end-member SrCoO2.5 was determined in space group of Imma, instead of Pnma or Ima2 proposed previously, with G-type antiferromagnetic order up to TN = 570 K. In SrCoO2.875, clear peak splitting was observed from (200) in cubic phase to (004) and (440) in tetragonal phase, indicating that the precise structure is I4/mmm with a = b = 10.829(9) Å and c = 7.684(2) Å at 95 K, and the corresponding magnetic structure is ferromagnetic with 1.86(4) μB per formula, in accordance to a spin configuration of cobalt ions with an intermediate spin state of both on Co3+ and on Co4+. The end member SrCoO3.00 possesses a simple cubic crystal structure with a = 3.817(2) Å at 95 K, and ferromagnetic order up to 280 K. The magnetic moment of 1.96(8) μB /Co4+ corresponds to an intermediate spin state of Co4+.
- ItemFeCr2S4 in magnetic fields: possible evidence for a multiferroic ground state(Nature.com, 2014-08-15) Bertinshaw, J; Ulrich, C; Günther, A; Schrettle, F; Wohlauer, M; Krohns, S; Reehuis, M; Studer, AJ; Avdeev, M; Quach, DV; Groza, JR; Tsurkan, V; Loidl, A; Deisenhofer. J.We report on neutron diffraction, thermal expansion, magnetostriction, dielectric, and specific heat measurements on polycrystalline FeCr2S4 in external magnetic fields. The ferrimagnetic ordering temperatures TC ≈ 170 K and the transition at TOO ≈ 10 K, which has been associated with orbital ordering, are only weakly shifted in magnetic fields up to 9 T. The cubic lattice parameter is found to decrease when entering the state below TOO. The magnetic moments of the Cr- and Fe-ions are reduced from the spin-only values throughout the magnetically ordered regime, but approach the spin-only values for fields >5.5 T. Thermal expansion in magnetic fields and magnetostriction experiments indicate a contraction of the sample below about 60 K. Below TOO this contraction is followed by a moderate expansion of the sample for fields larger than ~4.5 T. The transition at TOO is accompanied by an anomaly in the dielectric constant. The dielectric constant depends on both the strength and orientation of the external magnetic field with respect to the applied electric field for T < TOO. A linear correlation of the magnetic-field-induced change of the dielectric constant and the magnetic-field dependent magnetization is observed. This behaviour is consistent with the existence of a ferroelectric polarization and a multiferroic ground state below 10 K. © The Authors
- ItemThe frustrated quantum spin chain, linarite, in high magnetic fields(Australian Institute of Nuclear Science and Engineering, 2016-11-29) Willenberg, B; Nishimoto, S; Schaepers, M; Reehuis, M; Wolter, AUB; Drechsler, SL; Buechner, B; Studer, AJ; Rule, KC; Ouladdiaf, B; Suellow, SLinarite, PbCuSO4(OH)2 is a natural mineral ideally suited to the study of frustration in J1-J2 systems due to an accessible saturation field and the availability of large single crystals well suited to neutron investigations. In this one dimensional J1-J2 model, competing ferromagnetic nearest-neighbour interactions (J1>0) and antiferromagnetic next-nearest-neighbours (J2<0) can give rise to novel phenomena such as multiferroicity for spiral spin states. It is also predicted that materials which exhibit such frustrated magnetic interactions are likely to display evidence of spin-nematic states. The magnetic spin-nematic phase can be likened to the arrangement of molecules in nematic liquid crystal displays (LCD). The magnetic form of the spin-nematic state, involves the ordering of spin-quadrupole moments in the absence of conventional spin-dipole order such that the magnetic spins align spontaneously along a chosen axis while still fluctuating dynamically. In Linarite, the Cu2+ ions form spin S = 1/2 chains along the b direction with dominant nearest neighbour FM interactions and a weaker next-nearest-neighbour AFM coupling, resulting in a magnetically frustrated topology [1, 2]. We present a neutron scattering and magnetic property study of linarite revealing a helical magnetic ground state structure with an incommensurate propagation vector of (0 0.186 ½) below TN = 2.8K in zero magnetic field [3]. From detailed measurements in magnetic fields up to 12 T (B || b), a very rich magnetic phase diagram will be presented (Fig. 1) [4]. A two-step spin-flop transition is observed, transforming the helical magnetic ground state into a collinear structure. As well, a magnetic phase with sine-wave modulated moments parallel to the field direction was detected, enclosing the other long-range ordered phases, and which exhibits phase separation in high magnetic fields. Theoretical calculations imply that linarite possesses an xyz exchange anisotropy. Our data establish linarite as a model compound of the frustrated one-dimensional spin chain, with ferromagnetic nearest-neighbour and antiferromagnetic next-nearest-neighbour interactions. We shall also discuss the high field phase (marked “?” in the phase diagram of Fig. 1) in terms of the spin-nematic physics as well as the hard to access regions of the phase diagram, namely Region II.
- ItemGiant shifts of crystal field excitations with temperature as a consequence of internal magnetic exchange interactions(Australian Institute of Nuclear Science and Engineering (AINSE), 2020-11-11) O'Brien, J; Schmalzl, K; Reehuis, M; Mole, RA; Miyasaka, S; Fuioka, J; Tokura, Y; McIntyre, GJ; Ulrich, CCrystal field theory, invented in the 1930s by Hans Bethe, provides an explanation of the crystal field excitations (CFE) observed in inelastic neutron scattering (INS) spectra of rare-earth compounds [1]. However, some long withstanding problems remain. Our inelastic neutron scattering experiments on vanadates CeVO3 and TbVO3 did reveal an unexpected large shift of the energies of the crystal field excitations as a function of temperature. Thus far, only few publications on INS experiments mention shifts in crystal field excitation (CFE) energy in spectra above and below magnetic phase transition temperatures [2,3,4]. Recent IR transmission measurements also identified a CFE energy shift in hexagonal DyMnO3 with temperature and upon the application of an external magnetic field [5]. However, no studies report a detailed microscopic theory and to the best of our knowledge does not exist in literature. The vanadates CeVO3 and TbVO3 share the same orthorhombic Pbnm crystallographic structure featuring tilted, corner-sharing octahedra and possess a Cz-type antiferromagnetic structure below Néel temperatures 124 K and 110 K, respectively [6-9]. In both vanadates the CFE energies shift strongly below the magnetic phase transitions. We have used quantum-mechanical point-charge calculations to determine the energies of observed CFEs to model their large shift as a function of temperature. Two mechanisms have been simulated: (i) distortions of the crystallographic lattice due to magnetostriction, or (ii) internal magnetic exchange interactions with CF levels at the onset of the magnetic order. The effect of lattice distortions measured by neutron diffraction [7,8] produces a negligibly small shift of CFE energy, therefore cannot drive the shift. Results accounting for internal magnetic exchange fields arising from the ordered V3+ spins reveal a shift which agrees excellently with neutron data. The CFE energy shift is well reproduced with the same shift in CFE energy and intensity. Therefore, the unexpected large shift of CFE energies with temperature has been confirmed by point-charge model theoretical calculations and can be attributed to an internal magnetic exchange interaction. In addition to the CFEs, spin-wave excitations (magnons) are present in both vanadate materials below the magnetic phase transition. In TbVO3 there appears to be an anticrossing-like behaviour between magnon and CFE at 14 meV. Such an anticrossing has been reported in far-IR transmission investigations in Tb3Fe5O12 garnet [12]. In order to investigate this observation in TbVO3, magnon dispersion calculations have been performed to clarify the exact nature of the interaction. © The authors.
- ItemInelastic neutron scattering in multiferroic materials(Australian Institute of Physics, 2012-02-02) Reynolds, NM; Graham, P; Mulders, AM; McIntyre, G; Danilkin, SI; Fujioka, J; Tokura, Y; Keimer, B; Reehuis, M; Ulrich, CMagnetism and ferroelectricity are both exciting physical properties and are used in everyday life in sensors and data storage. Multiferroic materials are materials where both properties coexist. They offer a great potential for future technological applications like the increase of data storage capacity or in novel senor applications. The coupling mechanism between both antagonistic effects, electrical polarization and magnetic polarization, is not fully understood yet. The aim of the project is the systematic study of multiferroic materials such as TbMnO3 and related materials by inelastic neutron scattering (INS) in order to obtain a deeper insight into the interplay between the two interacting effects. We have started our investigations with TbVO3, which is isostructural to TbMnO3, but has a collinear antiferromagnetic spin arrangement [1] instead of a cycloidal spin structure [2]. By using inelastic neutron scattering (INS) we have obtained the spin wave dispersion relation and the crystal field excitations of the Tb-ions in TbVO3. These data will be compared with previously obtained data of D. Senff on TbMnO3 [3]. Experiments were performed at the ILL in Grenoble, France and at the research reactor OPAL at ANSTO, Australia.
- ItemInelastic neutron scattering in multiferroic materials(Australian Institute of Physics, 2012-02-02) Reynolds, NM; Graham, PJ; Mulders, AM; McIntyre, GJ; Dainlkin, SA; Fujioka, J; Tokura, Y; Keimer, B; Reehuis, M; Ulrich, CIn order to obtain a deeper understanding of the spin interactions between the magnetic moments of the Tb-ions and the Mn-ions in multiferroic TbMnO3, inelastic neutron scattering experiments (at the ILL in Grenoble and the Bragg Institute at ANSTO) are performed on isostructural, non-multiferroic TbVO3. Acoustic and optical magnon branches are identified at energies comparable to the spin wave excitation spectrum of YVO3. In addition, a crystal field excitation arising from the Tb-ions is identified at the energy of 14.9 meV. This is substantially larger than the crystal field excitation at 4.5 meV in TbMnO3.
- ItemInvestigations into the magnetic and crystal field excitations of the orthorhombically distorted perovskites RVO3 (R=Dy, Tb, Pr, Ce)(Australian Institute of Physics, 2013-02-06) Reynolds, NM; Rovillain, P; Danilkin, SA; Schmalzl, K; Reehuis, M; Miyasaka, S; Fujioka, F; Tokura, Y; Keimer, B; McIntyre, GJ; Ulrich, CNot available
- ItemInvestigations into the magnetic and crystal field excitations of the orthorhombically distorted perovskites TbVO3 and CeVO3(Australian Institute of Physics, 2018-01-30) O'Brien, J; Reynolds, N; Rovillain, P; Danilkin, SA; Schmalzl, K; Reehuis, M; Mole, RA; Miyasaka, S; Fujioka, F; Tokura, Y; Keimer, B; McIntyre, GJ; Ulrich, CInelastic neutron scattering experiments have been performed on a series of vanadates, in particular TbVO3 and CeVO3, to categorise the crystal field and magnetic excitations. The vanadates possess a configuration with corner sharing, distorted VO6 octahedra (space group Pbnm) with a collinear C-type antiferromagnetic structure occurring below Néel temperatures of TN = 110 K and 124 K respectively. Data from neutron scattering experiments reveal a hitherto unobserved shift of crystal field excitation energy in TbVO3 and CeVO3. Point-charge model calculations have confirmed this shift by theoretically calculating the crystal field excitation spectrum. We propose that the mechanism behind the effect is the onset of local magnetism caused by the ordering of the vanadium sublattice at the magnetic phase transition. This magnetic exchange field from the vanadium ions polarises the spins of the rare-earth ions located at the centre of the unit cell. This results in a Zeeman-like splitting of crystal field energy levels. As a result, crystal field transition energies demonstrate a linear shift as a function of internal magnetic field strength.
- ItemInvestigations of the magnetic and crystal field excitations in orthorhombically distorted perovskites RVO3 (R=Dy, Tb, Pr, Ce)(Australian Institute of Physics, 2017-01-31) O'Brien, J; Reynolds, NM; Mole, RA; Rovillain, P; Danilkin, SA; Schmalzl, K; Reehuis, M; Miyasaka, S; Fujioka, F; Tokura, Y; Keimer, B; McIntyre, GJ; Ulrich, CInelastic neutron scattering experiments have been performed on a series of vanadates, in particular DyVO3, TbVO3, PrVO3, and CeVO3, to categorise the crystal field and magnetic excitations. The vanadates are isostructural to the multiferroic manganites TbMnO3 and DyMnO3, with corner sharing, Jahn-Teller distorted VO6 octahedra (orthorhombic space group Pbnm). However, they posses a collinear C-type antiferromagnetic structure, instead of an incommensurate spin arrangement as in the manganites. In the vanadates, the antiferromagnetic order sets in below Neel temperatures of TN = 110 K to 124 K [1-5]. Using inelastic neutron scattering on single crystals we were able to determine the crystal field spectrum and spin wave dispersion relations independently. In order to determine the nature of the crystal field excitations of these materials and in order to understand how the magnetic and crystal field excitations influence one another, we have theoretically calculated the crystal field excitation spectrum. The results are compared to the crystal field and spin wave excitations in the multiferroic maganites [6], in order to obtain a deeper understanding of the coupling mechanism between the rare earth elements and the transition metals in RVO3 and RMnO3, respectively.
- ItemJahn-Teller versus quantum effects in the spin-orbital material LuVO 3(American Physical Society, 2015-04-13) Skoulatos, M; Toth, S; Roessli, B; Enderle, M; Habicht, K; Sheptyakov, D; Cervellino, A; Freeman, PG; Reehuis, M; Stunault, A; McIntyre, GJ; Tung, LD; Marjerrison, C; Pomjakushina, E; Brown, PJ; Khomskii, DI; Rüegg, A; Kreyssig, A; Goldman, AI; Goff, JPWe report on combined neutron and resonant x-ray scattering results, identifying the nature of the spin-orbital ground state and magnetic excitations in LuVO3 as driven by the orbital parameter. In particular, we distinguish between models based on orbital-Peierls dimerization, taken as a signature of quantum effects in orbitals, and Jahn-Teller distortions, in favor of the latter. In order to solve this long-standing puzzle, polarized neutron beams were employed as a prerequisite in order to solve details of the magnetic structure, which allowed quantitative intensity analysis of extended magnetic-excitation data sets. The results of this detailed study enabled us to draw definite conclusions about the classical versus quantum behavior of orbitals in this system and to discard the previous claims about quantum effects dominating the orbital physics of LuVO3 and similar systems. © 2015 American Physical Society
- ItemMagnetic frustration in a quantum spin chain: the case of Linarite PbCuSO4(OH)(2)(American Physical Society, 2012-03-16) Willenberg, B; Schäpers, M; Rule, KC; Süllow, S; Reehuis, M; Ryll, H; Klemke, B; Kiefer, K; Schottenhamel, W; Büchner, B; Ouladdiaf, B; Uhlarz, M; Beyer, R; Wosnitza, J; Wolter, A U BWe present a combined neutron diffraction and bulk thermodynamic study of the natural mineral linarite PbCuSO4(OH)(2), this way establishing the nature of the ground-state magnetic order. An incommensurate magnetic ordering with a propagation vector k = (0, 0.186, 1/2) was found below T-N = 2.8 K in a zero magnetic field. The analysis of the neutron diffraction data yields an elliptical helical structure, where one component (0.638 mu(B)) is in the monoclinic ac plane forming an angle with the a axis of 27(2)degrees, while the other component (0.833 mu(B)) points along the b axis. From a detailed thermodynamic study of bulk linarite in magnetic fields up to 12 T, applied along the chain direction, a very rich magnetic phase diagram is established, with multiple field-induced phases, and possibly short-range-order effects occurring in high fields. Our data establish linarite as a model compound of the frustrated one-dimensional spin chain, with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. Long-range magnetic order is brought about by interchain coupling 1 order of magnitude smaller than the intrachain coupling. © 2012, American Physical Society.
- ItemMagnetic phase diagram of Sr3Fe2O7-delta(American Physical Society, 2013-06-10) Peets, DC; Kim, JH; Dosanjh, P; Reehuis, M; Maljuk, A; Aliouane, N; Ulrich, C; Keimer, BMagnetometry, electrical transport, and neutron scattering measurements were performed on single crystals of the Fe4+-containing perovskite-related phase Sr3Fe2O7−δ as a function of oxygen content. Although both the crystal structure and electron configuration of this compound are closely similar to those of well-studied ruthenates and manganates, it exhibits very different physical properties. The fully oxygenated compound (δ=0) exhibits a charge-disproportionation transition at TD=340 K, and an antiferromagnetic transition at TN=115 K. For temperatures T≤TD, the material is a small-gap insulator; the antiferromagnetic order is incommensurate, which implies competing exchange interactions between the Fe4+ moments. The fully deoxygenated compound (δ=1) is highly insulating, and its Fe3+ moments exhibit commensurate antiferromagnetic order below TN∼600 K. Compounds with intermediate δ exhibit different order with lower TN, likely as a consequence of frustrated exchange interactions between Fe3+ and Fe4+ sublattices. A previous proposal that the magnetic transition temperature reaches zero is not supported. © 2013, American Physical Society.
- ItemNeutron diffraction study of spin and charge ordering in SrFeO3-delta(American Physical Society, 2012-05-22) Reehuis, M; Ulrich, C; Maljuk, A; Niedermayer, C; Ouladdiaf, B; Hoser, A; Hofmann, T; Keimer, BWe report a comprehensive neutron diffraction study of the crystal structure and magnetic order in a series of single-crystal and powder samples of SrFeO3-delta in the vacancy range 0 <= delta <= 0.23. The data provide detailed insights into the interplay between the oxygen vacancy order and the magnetic structure of this system. In particular, a crystallographic analysis of data on Sr8Fe8O23 revealed a structural transition between the high-temperature tetragonal and a low-temperature monoclinic phase with a critical temperature T = 75 K, which originates from charge ordering on the Fe sublattice and is associated with a metal-insulator transition. Our experiments also revealed a total of seven different magnetic structures of SrFeO3-delta in this range of delta, only two of which namely an incommensurate helix state in SrFeO3 and a commensurate, collinear antiferromagnetic state in Sr4Fe4O11) had been identified previously. We present a detailed refinement of some of the magnetic ordering patterns and discuss the relationship between the magnetotransport properties of SrFeO3-delta samples and their phase composition and magnetic microstructure. © 2012, American Physical Society.
- ItemNeutron diffraction, magnetostriction, and dielectric properties of orbitally ordered FeCr2S4 in external magnetic fields(arXiv, 2013-09-09) Bertinshaw, J; Ulrich, C; Günther, A; Schrettle, F; Wohlauer, M; Krohns, S; Reehuis, M; Studer, AJ; Avdeev, M; Quach, DV; Groza, JR; Tsurkan, V; Loidl, A; Deisenhofer, JWe report on neutron diffraction, thermal expansion, dielectric and specific heat measurements on polycrystalline FeCr2S4 samples in external magnetic fields. The ferrimagnetic and orbital ordering temperatures, T_C = 170K and T_OO = 10 K are only weakly shifted in magnetic fields up to 9 T. The cubic lattice parameter is found to decrease when entering the orbitally ordered state below T_OO. This contraction does not significantly change in external fields up to 7.5 T. The magnetic moments of the Cr and Fe ions are reduced from the spin-only values throughout the magnetically ordered regime. The moments start to increase in the orbitally ordered regime when the magnetic fields become larger than 4.5 T and approach the expected spin-only values above about 5.5 T. Thermal expansion in magnetic fields and magnetostriction experiments indicate a contraction of the sample due to magnetic domains below about 60 K. In the orbitally ordered state this contraction is followed by a moderate expansion of the sample for fields larger than about 4.5 T, coinciding with the onset of the increase of the magnetic moments. The orbital ordering transition is accompanied by an anomaly in the dielectric constant. Below T_OO the dielectric constant depends on both the strength of the external magnetic field as well as the orientation of the external magnetic field with respect to the applied electric field.
- ItemStructural and magnetic phase transitions of the orthovanadates RVO3 (R= Dy, Ho, Er) as seen via neutron diffraction(American Physical Society, 2011-02-10) Reehuis, M; Ulrich, C; Prokeš, K; Mat'aš, S; Fujioka, J; Miyasaka, S; Tokura, Y; Keimer, BThe structural and magnetic phase behavior of RVO3 with R=v Dy, Ho, and Er was studied by single-crystal neutron diffraction. Upon cooling, all three compounds show structural transitions from orthorhombic (space group Pbnm) to monoclinic (p21/b) symmetry due to the onset of orbital order at T= 188–200 K, followed by Néel transitions at T= 110–113 K due to the onset of antiferromagnetic (C-type) order of the vanadium moments. Upon further cooling, additional structural phase transitions occur for DyVO3 and ErVO3 at 60 and 56 K, respectively, where the monoclinic structure changes to an orthorhombic structure with the space group Pbnm, and the magnetic order of the V sublattice changes to a G-type structure. These transition temperatures are reduced compared to the ones previously observed for nonmagnetic R3+ ions due to exchange interactions between the V3+ and R3+ ions. For ErVO3, R-R exchange interactions drive a transition to collinear magnetic order at T= 2.5 K. For HoVO3, the onset of noncollinear, weakly ferromagnetic order of the Ho moments nearly coincides with the structural phase transition from the monoclinic to the low-temperature orthorhombic structure. This transition is characterized by an extended hysteresis between 24 and 36 K. The Dy moments in DyVO3 also exhibit noncollinear, weakly ferromagnetic order upon cooling below 13 K. With increasing temperature, the monoclinic structure of DyVO3 reappears in the temperature range between 13 and 23 K. This reentrant structural transition is associated with a rearrangement of the Dy moments. A group theoretical analysis showed that the observed magnetic states of the R3+ ions are compatible with the lattice structure. The results are discussed in the light of recent data on the magnetic field dependence of the lattice structure and magnetization of DyVO3 and HoVO3. © 2011, American Physical Society
- ItemThermodynamic properties of the anisotropic frustrated spin-chain compound linarite PbCuSO4(OH)2(American Physical Society, 2013-11-15) Schäpers, M; Wolter, AUB; Drechsler, SL; Nishimoto, S; Müller, KH; Abdel-Hafiez, M; Schottenhamel, W; Büchner, B; Richter, J; Ouladdiaf, B; Uhlarz, M; Beyer, R; Skourski, Y; Wosnitza, J; Rule, KC; Ryll, H; Klemke, B; Kiefer, K; Reehuis, M; Willenberg, B; Süllow, SWe present a comprehensive macroscopic thermodynamic study of the quasi-one-dimensional (1D) s = 1/2 frustrated spin-chain system linarite. Susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements were performed to characterize the magnetic phase diagram. In particular, for magnetic fields along the b axis five different magnetic regions have been detected, some of them exhibiting short-range-order effects. The experimental magnetic entropy and magnetization are compared to a theoretical modeling of these quantities using density matrix renormalization group (DMRG) and transfer matrix renormalization group (TMRG) approaches. Within the framework of a purely 1D isotropic model Hamiltonian, only a qualitative agreement between theory and the experimental data can be achieved. Instead, it is demonstrated that a significant symmetric anisotropic exchange of about 10% is necessary to account for the basic experimental observations, including the three-dimensional (3D) saturation field, and which in turn might stabilize a triatic (three-magnon) multipolar phase. © 2013, American Physical Society.