Browsing by Author "Qu, DD"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemInhomogeneous structure and glass-forming ability in Zr-based bulk metallic glasses(Elsevier, 2010-01-01) Sun, YL; Qu, DD; Sun, YJ; Liss, KD; Shen, JRecently, a series of quaternary Zr-based bulk metallic glasses (BMGs), i.e., Zr53Cu18.7Ni12Al16.3, Zr51.9Cu23.3Ni10.5Al14.3 and Zr50.7Cu28Ni9Al12.3, have been developed and their glass-forming ability (GFA) increases with Cu concentration. In this work, atomic structures of the three BMGs were rebuilt by reverse Monte Carlo simulations based on the reduced pair distribution functions measured by high energy X-ray diffraction. The results show that a certain amount of substitution of short Zr-Cu, Cu-Cu pairs with long Zr-Zr and Zr-Al pairs enhances the local denser packing of Kasper polyhedral centered by Zr and Al atoms. A cell sub-divided method is proposed to describe the fluctuation of local number density which is found to follow the normal distribution function. The largest possible free volume in the three alloys is found to approaches to 3.8 angstrom. For the three alloys, the enhancement of GFA with increasing Cu content is due to the increase in the fluctuation degree of local density instead of the dense packing. © 2010, Elsevier Ltd.
- ItemOn the atomic anisotropy of thermal expansion in bulk metallic glass(Wiley-Blackwell, 2011-09-01) Qu, DD; Liss, KD; Yan, K; Reid, M; Almer, JD; Wang, Y; Liao, XZ; Shen, JGlass transition temperature and plastic yield strength are known to be correlated in metallic glasses. We have observed by in situ synchrotron high energy X-ray diffraction anisotropy of the thermal expansion behavior in the nearest neighbor and second nearest neighbor atomic distances in the building blocks of Zr-Cu-Ni-Al based bulk metallic glass, leading inevitably to shear. Mechanical yielding of the latter on the atomic scale leads to the glass transition and the increase of the free volume. These experimental results uncover the mechanism, how glass transition and yield strength are linked. © 2011, Wiley-Blackwell.
- ItemOn the atomic anisotropy of thermal expansion in bulk metallic glass(Australian Institute of Physics, 2011-02-03) Liss, KD; Qu, DD; Reid, M; Shen, JGlass transition temperature and plastic yield strength are known to be correlated in metallic glasses. We have observed by in-situ synchrotron high energy X-ray diffraction anisotropy in the thermal expansion behavior of the nearest neighbor and second nearest neighbor atomic distances in the building blocks of Zr-Cu-Ni-Al based bulk metallic glass, leading inevitably to local shear stresses. Mechanical yielding of the latter on the atomic scale leads to the glass transition and the increase of the free volume. These experimental results uncover the mechanism, how glass transition and yield strength are linked.
- ItemPhase stability of dross particles in hot-dip Zn-55wt%Al-1.6wt%Si galvanizing bath(MDPI, 2023-01-31) Qu, DD; Gear, M; Gu, QF; Setargew, N; Renshaw, W; McDonald, S; StJohn, D; Nogita, KDross in a Zn-55wt%Al-1.6wt%Si metal coating bath is a mixture of bath metal and the quaternary intermetallic phase τ5c-Al20Fe5Si2(+Zn). Understanding the properties and formation of dross in a hot-dip Al-Zn galvanizing bath at the processing temperature (~600 °C) is critical for improving the production quality of steel sheet coating. However, dross analysis is usually conducted at room temperature with dross samples taken from the hot-dip bath and it is not known how representative these samples are of the phase(s) existing at high temperature. Using in-situ synchrotron X-ray diffraction (XRD), the crystal lattice and the coefficient of thermal expansion (CTE) of the intermetallic phase have been determined in the temperature range of 30 °C to 660 °C. Phase formation and phase stability of the intermetallic phase in the dross powder have been determined, providing fundamental knowledge for optimizing the production and quality of steel sheet coating. © 2023 The Authors.
- ItemStructural origins for the high plasticity of a Zr-Cu-Ni-Al bulk metallic glass(Pergamon-Elsevier Science Ltd, 2012-09-11) Qu, DD; Liss, KD; Sun, YJ; Reid, M; Almer, JD; Yan, K; Wang, Y; Liao, XZ; Shen, JThe structural origins for the high plasticity of a Zr(53)Cu(18.7)Ni(12)Al(16.3) (at.%) bulk metallic glass are explored. Under plastic flow conditions, in situ synchrotron high-energy X-ray diffraction reveals that the atomic strain saturates to the closest packing in the longitudinal direction of the applied load while atoms yield in the transverse plane. Scanning electron microscopy investigation reveals that global plasticity benefits from abundant shear band multiplication and interactions. Atomic level flows are seen to accompany profuse shear bands. The plasticity enhancement of this metallic glass benefits from such atomic level flows. Atomic level flow facilitates the activation of shear transformation zones that further self-assemble to promote shear band multiplication. On the other hand, it also mitigates the shear band propagation that prevents catastrophic shear band extension. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. © 2012, Elsevier Ltd.
- ItemVariability of poisson's ratio and enhanced ductility in amorphous metal(Wilye-V C H Verlag GMBH, 2013-05-01) Liss, KD; Qu, DD; Yan, K; Reid, MDuctile bulk metallic glass of composition 53.0Zr–18.7Cu–12.0Ni–16.3Al (at%) is plastically deformed under uniaxial compression and observed in situ by synchrotron high-energy X-ray diffraction. The diffraction patterns reveal the induced atomic strain is orientation dependent. At the onset of plastic deformation, the atomic strain in the compression direction saturates to a close-nearest-neighbor distance while atoms relax in the transverse direction. The ever increasing transverse atomic strain expresses in an augmentation of the apparent Poisson's ratio up to ν = 0.5, which is consistent with volume conservation. Contradicting phenomena from linear mechanics, such as the non-vanishing shear modulus at ν = 0.5 can be explained by the non-affine character of the deformation, giving rise to characteristics of a localized martensitic phase transformation. The findings explain the often-reported phenomena such as, the high Poisson's ratio values found in metallic glasses, the partially liquid character of the structure, the free volume increase and the Bauschinger effect. © 2013, Wiley-VCH Verlag GmbH & Co. KGaA
- ItemZr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability.(Elsevier, 2009-02) Sun, YJ; Qu, DD; Huang, YJ; Liss, KD; Wei, XS; Xing, DW; Shen, JZr-Cu-Ni-Al quaternary amorphous alloy compositions with varying glass-forming ability are developed by an efficient method of proportional mixing of binary eutectics. The critical diameter of the glassy sample is improved from 6 mm for Zr53Cu18.7Ni12Al16.3 to 14 mm for Zr50.7Cu28Ni9Al12.3 by straightforwardly adjusting the eutectic unit's coefficients. The drastic improvement in GFA is attributed to balancing, the chemical affinities of the Zr, Cu, Ni and Al components in the melt prior to solidification which makes the precipitation of competing crystalline phases more difficult. As the glass-forming ability increases, the concentration Of Cu ill the alloys exhibits a same trend. Based on synchrotron radiation high-energy X-ray diffraction analysis and Miracle's structural model, it is envisioned that the substitution of additional Cu Morris for Zr atoms in the investigated alloys stabilizes the efficient cluster packing structure of the amorphous alloys, leading to the pronounced increase ill their glass-forming ability. © 2008, Elsevier Ltd.