Browsing by Author "Plathe, R"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCondensed phase studies at the THz/Far-IR beamline at the Australian Synchrotron(Australian Institute of Physics, 2014-02-06) Appadoo, D; Ennis, C; Plathe, RThe THz/Far-IR beamline at the Australian Synchrotron is coupled to a Bruker IFS125HR FT spectrometer equipped with a variety of optical components which can cover the spectral range from 5 to 5000 cm-1. Experiments from a variety of fields such as atmospheric and astrophysical science, geology, electrochemistry, nano-materials as well as biology have been successfully conducted at the beamline. There is a range of instruments to accommodate the diverse requirements of the User community. For gas-phase experiments, the beamline is equipped with multiple-pass optics gas-cells: one of which can be coupled to a furnace to study reactive species, while another can be cooled to liquid nitrogen or helium temperatures to study aerosols and cold gases. Users also have access to a couple of cryostats (one > 79 K, the other > 6 K), a grazing incidence angle optical setup and a near-normal accessory to study condensed phase systems, thin films and surface interactions. The synchrotron infrared light offers a S/N advantage over conventional thermal sources, but this advantage varies to a great degree upon the spectral range, sample size and resolution dictated by the application. In this paper, the capabilities and performance of the THz/Far-IR beamline at the Australian Synchrotron will be presented as well as some applications undertaken at the beamline, and future developments.
- ItemTHz/Far-IR astrophysical studies at the Australian synchrotron(Institute of Electrical and Electronic Engineers, 2019-09) Appadoo, D; Plathe, RTHz synchrotron spectroscopy has become an important tool in the identification and quantification of molecular species of astrophysical interest; it is a routinely used technique as it is well established that synchrotron radiation offers a S/N advantage over conventional thermal sources. The brightness advantage is perfectly suited for high-resolution gas-phase spectroscopy, and at the Australian Synchrotron, this advantage is limited to energies lying below 1500 cm-1; however, a flux advantage is maintained for energies below 350 cm-1 which facilitates the study of homogeneous condensed-phase samples. The THz/Far-IR beamline is equipped with a suite of both gas-phase and condensed-phase techniques to enable research on interstellar molecular species, and in this paper, the beamline capabilities available for the study of molecular species of astrophysical interest will be presented. © The authors.