Browsing by Author "Placzek, CJ"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemSeismic origin of the Atacama Desert boulder fields(Elsevier BV, 2015-02-15) Matmon, A; Quade, J; Placzek, CJ; Fink, D; Arnold, M; Aumaître, G; Bourlès, D; Keddadouche, K; Copeland, A; Neilson, JWExtensive fields of large boulders are common around the base of hills in the Atacama Desert. How these boulders are transported from nearby hillslopes is unclear given the lack of rainfall of the region. Here we document the central role of seismicity, not runoff, in transporting and smoothing >1 ton boulders all across the hyperarid core of the Atacama Desert. The generally granitoid boulders emerge as corestones on hillslopes at an erosion rate of 0.1-1 m Ma(-1). Thereafter, physical and cosmogenic isotopic evidence suggests that boulders slide and bounce rather than roll down hills and onto adjacent flats. In the transport process, the largest boulders are split and the smaller ones are weathered to grus, narrowing average boulder mass to similar to 2 tons (<1 m(3)). At the base of hills, the boulders bunch together and rub during the frequent earthquakes in the region, producing distinctive smoothing around boulder mid-sections, and silt moats around the boulder bases. Our measurements show a strong correlation between boulder field density and rubbing, and only when the density exceeds 60-70% does rubbing become common. Except for slow removal by rubbing, the boulders seem to undergo no further erosion while in the flats. Exposure times for some boulders are >12 Ma, making them among the oldest continuously exposed features on the Earth. Boulder rubbing is just one geologic feature among many in the Atacama that underscore the role that seismicity probably plays in shaping landscapes of the waterless worlds of the solar system. © 2015, Elsevier B.V.
- ItemUsing 10Be cosmogenic isotopes to estimate erosion rates and landscape changes during the Plio-Pleistocene in the Cradle of Humankind, South Africa(Elsevier, 2016-07) Dirks, PJHM; Placzek, CJ; Fink, D; Dosseto, A; Roberts, EConcentrations of cosmogenic 10Be, measured in quartz from chert and river sediment around the Cradle of Humankind (CoH), are used to determine basin-averaged erosion rates and estimate incision rates for local river valleys. This study focusses on the catchment area that hosts Malapa cave with Australopithecus sediba, in order to compare regional versus localized erosion rates, and better constrain the timing of cave formation and fossil entrapment. Basin-averaged erosion rates for six sub-catchments draining the CoH show a narrow range (3.00 ± 0.28 to 4.15 ± 0.37 m/Mega-annum [Ma]; ±1σ) regardless of catchment size or underlying geology; e.g. the sub-catchment with Malapa Cave (3 km2) underlain by dolomite erodes at the same rate (3.30 ± 0.30 m/Ma) as the upper Skeerpoort River catchment (87 km2) underlain by shale, chert and conglomerate (3.23 ± 0.30 m/Ma). Likewise, the Skeerpoort River catchment (147 km2) draining the northern CoH erodes at a rate (3.00 ± 0.28 m/Ma) similar to the Bloubank-Crocodile River catchment (627 km2) that drains the southern CoH (at 3.62 ± 0.33 to 4.15 ± 0.37 m/Ma). Dolomite- and siliciclastic-dominated catchments erode at similar rates, consistent with physical weathering as the rate controlling process, and a relatively dry climate in more recent times. Erosion resistant chert dykes along the Grootvleispruit River below Malapa yield an incision rate of ∼8 m/Ma at steady-state erosion rates for chert of 0.86 ± 0.54 m/Ma. Results provide better palaeo-depth estimates for Malapa Cave of 7–16 m at the time of deposition of A. sediba. Low basin-averaged erosion rates and concave river profiles indicate that the landscape across the CoH is old, and eroding slowly; i.e. the physical character of the landscape changed little in the last 3–4 Ma, and dolomite was exposed on surface probably well into the Miocene. The apparent absence of early Pliocene- or Miocene-aged cave deposits and fossils in the CoH suggests that caves only started forming from 4 Ma onwards. Therefore, whilst the landscape in the CoH is old, cavities are a relatively young phenomenon, thus controlling the maximum age of fossils that can potentially be preserved in caves in the CoH. © 2016 Elsevier Ltd.