Browsing by Author "Petasecca, M"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- Item3D radiation detectors: charge collection characterisation and applicability of technology for microdosimetry(IEEE Xplore, 2014-08-04) Tran, LT; Prokopovich, DA; Petasecca, M; Lerch, MLF; Kok, A; Summanwar, A; Hansen, T; Via, CD; Reihnard, MI; Rosenfeld, ABA study of charge collection in SINTEF 3D active edge silicon detectors was carried out at ANSTO using Ion Beam Induced Charge (IBIC) technique. An IBIC study has shown that several different geometries of 3D detectors have full depletion under low applied bias. The effect of fast neutron and gamma radiation on their charge collection efficiency was also investigated. A 3D active edge silicon detector technology has demonstrated extremely promising performance for application of the 3D Sensitive Volumes (SVs) fabrication methods to SOI microdosimetry.© 2014, IEEE.
- Item3D sensitive volume microdosimeter with improved tissue equivalency: charge collection study and its application in 12C ion therapy(IOP Publishing, 2018-02-06) James, B; Tran, LT; Bolst, D; Prokopovich, DA; Reinhard, MI; Lerch, MLF; Petasecca, M; Guatelli, S; Povoli, M; Kok, A; Matsufuji, N; Jackson, M; Rosenfeld, ABThis research focuses on the characterisation of a new 3D sensitive volume (SV) microdosimeter covered with polyimide – a material which closely mimics human tissue. The electrical and charge collection properties of the device were investigated and its application in 12C ion therapy were studied. Charge collection studies revealed uniform charge collection and no cross talk between adjacent SVs. To study the microdosimetric response in 12C ion therapy, the new polyimide mushroom microdosimeter were placed at various positions along the central axis of a 290 MeV/u 12C ion spread out Bragg peak (SOBP) at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. From these microdosimetric spectra, dose mean lineal energy $(\overline{{y}_{D})}$ and RBE10 results were obtained, with RBE10 increasing from 1.3 at the entrance to 2.7 at the end of the SOBP. The results obtained in this work show that the new generation of mushroom microdosimeters, covered with tissue equivalent polyimide material, are a useful tool for quality assurance in heavy ion therapy applications. © Open Access - CC BY - IOP Publishing Ltd.
- ItemAngular independent silicon detector for dosimetry in external beam radiotherapy(American Association of Physicists in Medicine, 2015-07-17) Petasecca, M; Alhujaili, S; Aldosari, AH; Fuduli, I; Newal, M; Porumb, CS; Carolan, MG; Nitschke, K; Lerch, MLF; Kalliopuska, J; Perevertaylo, VL; Rosenfeld, ABPurpose: In this work, the “edgeless” silicon detector technology is investigated, in combination with an innovative packaging solution, to manufacture silicon detectors with negligible angular response. The new diode is also characterized as a dosimeter for radiotherapy with the aim to verify its suitability as a single detector for in vivo dosimetry as well as large area 2D array that does not require angular correction to their response. Methods: For the characterisation of the “edgeless-drop-in” detector technology, a set of samples have been manufactured with different sensitive areas (1 × 1 and 0.5 × 0.5 mm2) and different thicknesses (0.1 and 0.5 mm) in four different combinations of top and peripheral p–n junction fabricated on p-type and n-type silicon substrates. The diode probes were tested in terms of percentage depth dose (PDD), dose rate, and linearity and compared to ion chambers. Measurements of the output factor have been compared to film. The angular response of the diodes probes has been tested in a cylindrical PMMA phantom, rotated with bidirectional accuracy of 0.25° under 10 × 10 cm2 6 MV Linac photon beam. The radiation hardness has been investigated as well as the effect of radiation damage on the angular and dose rate response of the diode probes when irradiated with photons from a Co-60 gamma source up to dose of 40 kGy. Results: The PDDs measured by the edgeless detectors show an agreement with the data obtained using ion chambers within ±2%. The output factor measured with the smallest area edgeless diodes (0.5 × 0.5 mm2—0.1 and 0.5 mm thick) matches EBT3 film to within 2% for square field size from 10 to 0.5 cm side equivalent distance. The dose rate dependence in a dose per pulse range of 0.9 × 10−5–2.7 × 10−4 Gy/pulse was less than −7% and +300% for diodes fabricated on p-type and n-type substrates, respectively. The edgeless diodes fabricated on the p-type substrate demonstrated degradation of the response as a function of the irradiation dose within 5%–15%, while diodes on the n-type substrate show a variation of approximately 30% after 40 kGy. The angular response of all probes is minimal (within 2%) but the N on N and P on P configurations show the best performances with an angular dependence of ±1.0% between 0° and 180° in the transversal direction. In this configuration, the space charge region of the passive diode extends from the behind and sidewall toward the anode on the top providing beneficial electric field distribution in the peripheral area of the diode. Such performance has also been tested after irradiation by Co-60 up to 40 kGy with no measurable change in angular response. Conclusions: A new edgeless-drop-in silicon diode fabrication and packaging technology has been used to develop detectors that show no significant angular dependence in their response for dosimetry in radiation therapy. From the characterisation of the diodes, proposed in a wide range of different geometries and configurations, the authors recommend the P-on-P detectors in conjunction with “drop in” packaging technology as the candidate for further development as single diode probe or 2D diode array for dosimetry in radiotherapy. © 2015 American Association of Physicists in Medicine
- ItemCharge collection in SOI microdosimeters and their radiation hardness(IEEE, 2023-02-03) Pan, VA; Tran, LT; Pastuovic, Z; Hill, D; Williams, JB; Kok, A; Povoli, M; Pogossov, A; Peracchi, S; Boardman, DA; Davis, J; Guatelli, S; Petasecca, M; Lerch, MLF; Rosenfeld, ABA new batch of microdosimeters has been extensively studied for their charge collection efficiency (CCE) properties, as well as their radiation hardness for medical, space and accident applications. Silicon-on-insulator (SOI) microdosimeters with an active layer thickness of 10, 20 and 50 μm have been investigated and were characterized with a 24 MeV carbon ion beam as well as a Co-60 gamma source. A negative pulse was observed in addition to the positive pulses generated within the sensitive volumes (SVs) by incident ions which led to undesirable low energy events in the SOI microdosimeters response. To study this phenomenon, the microdosimeters were irradiated with gamma radiation from a Co-60 source with a total dose of 3 and 10 Mrad(Si). It was determined that the negative pulse was originating from the support wafer due to the displacement current phenomenon. Irradiation with the Co-60 source led to a disappearing of the negative pulse due to an increase in recombination within the support wafer while almost no changes in CCE were observed. A radiation hardness study was also performed on the 50 μm SOI microdosimeter with 16 SVs being irradiated with a fluence of ~ 10 8 12 C ions/cm 2 . A CCE deficit of approximately 2% was observed at an operation bias of 10V within the SVs. The findings of this work demonstrate that the SOI microdosimeters can be utilized in space and medical applications as they can handle typical levels of dose encountered in these applications. Additionally, evidence for SOI microdosimeter fabrication standards in terms of support wafer resistivity and buried oxide (BOX) thickness is shown. © 2023 IEEE
- ItemDevelopment of a large-area silicon α-particle detector(Elsevier, 2014-09) Tran, LT; Prokopovich, DA; Lerch, MLF; Petasecca, M; Siegele, R; Reinhard, MI; Perevertaylo, VL; Rosenfeld, ABCircular ion-implanted silicon detector of α-particles with a large, 5-cm2, sensitive area has been developed. An advantage of the detector is that the detector surface is easily cleanable with chemicals. The hardened surface of the detector shows no signs of deterioration of the spectroscopic and electrical characteristics upon repeated cleaning. The energy resolution along the diameters of the detector was (1.0±0.1)% for the 5.486-MeV α-particles. Detailed tests of the charge collection efficiency and uniformity of the detector entrance window were also performed with a 5.5-MeV He2+ microbeam. © 2014, Elsevier Ltd.
- ItemEvaluation of silicon detectors with integrated JFET for biomedical applications(Institute of Electrical and Electronics Engineers (IEEE), 2009-06) Safavi-Naeini, M; Franklin, DR; Lerch, MLF; Petasecca, M; Pignatel, G; Reinhard, MI; Dalla Betta, GF; Zorzi, N; Rosenfeld, ABThis paper presents initial results from electrical, spectroscopic and ion beam induced charge (IBIC) characterisation of a novel silicon PIN detector, featuring an on-chip n -channel JFET and matched feedback capacitor integrated on its p-side (frontside). This structure reduces electronic noise by minimising stray capacitance and enables highly efficient optical coupling between the detector back-side and scintillator, providing a fill factor of close to 100%. The detector is specifically designed for use in high resolution gamma cameras, where a pixellated scintillator crystal is directly coupled to an array of silicon photodetectors. The on-chip JFET is matched with the photodiode capacitance and forms the input stage of an external charge sensitive preamplifier (CSA). The integrated monolithic feedback capacitor eliminates the need for an external feedback capacitor in the external electronic readout circuit, improving the system performance by eliminating uncontrolled parasitic capacitances. An optimised noise figure of 152 electrons RMS was obtained with a shaping time of 2 mus and a total detector capacitance of 2 pF. The energy resolution obtained at room temperature (2°C) at 27 keV (direct interaction of I-125 gamma rays) was 5.09%, measured at full width at half maximum (FWHM). The effectiveness of the guard ring in minimising the detector leakage current and its influence on the total charge collection volume is clearly demonstrated by the IBIC images. © 2009, Institute of Electrical and Electronics Engineers (IEEE)
- ItemFrom imaging to dosimetry: GEANT4-based study on the application of medipix to neutron dosimetry(Elsevier, 2009-10-12) Othman, MAR; Marinaro, DG; Petasecca, M; Guatelli, S; Cutajar, DL; Lerch, MLF; Prokopovich, DA; Reinhard, MI; Uher, J; Jakubek, J; Pospisil, S; Rosenfeld, ABAn application of Medipix2 using a newly developed segmented multiple thickness polyethylene (PE) converter for fast neutron detection is presented. The system has the ability to provide an energy independent response for the dose equivalent for fast neutrons. The application of weighting factors to each defined thickness of PE allows for a flattening of the response of the detector system for dosimetry applications. Six PE converter segments were applied, and their thicknesses and weighting factors were optimised to obtain the required energy independent detector response. The study performed by means of GEANT4. Its suitability for neutron dosimetry was studied with respect to a previously published work. © 2013 Elsevier B.V.
- ItemIBIC microscopy – the powerful tool for testing micron – sized sensitive volumes in segmented radiation detectors used in synchrotron microbeam radiation and hadron therapies(Elsevier B. V., 2019-11-01) Pastuovic, Z; Davis, J; Tran, LT; Paino, JR; Dipuglia, A; James, B; Povoli, M; Kok, A; Perevertaylo, VL; Siegele, R; Prokopovich, DA; Lerch, MLF; Petasecca, M; Rosenfeld, AB; Cohen, DDIon Beam Induced Charge (IBIC) microscopy performed using highly tuned microbeams of accelerated ions with energies in the MeV range is the powerful tool for analysis of charge carrier transport properties in semiconductor devices based on semiconductor hetero-junction, metal-on-semiconductor and semiconductor-on-insulator configurations. Here we present two cases of recent applications of the IBIC microscopy in the field of medical radiation physics. The reduced-rate ion microbeams with energies in the MeV range and sub-micrometer spot-sizes have been used for the investigations of the charge collection efficiency (CCE) in sensitive volumes of segmented radiation detectors in order to measure the spatial distribution and uniformity of CCE in different polarization conditions. This information allows the determination of the charge carrier transport properties in selected substructures of a particular device and to quantify its ability to accurately determine the energy deposited by incident ionizing radiation - two fundamental requirements of any microdosimeter or detector of ionizing radiation. © 2019 Elsevier B.V.
- ItemMOSkin dosimetry for an ultra-high dose-rate, very high-energy electron irradiation environment at PEER(Frontiers, 2024-07-30) Cayley, J; Tan, YRE; Petasecca, M; Cutajar, DL; Breslin, T; Rosenfeld, AB; Lerch, MLFFLASH radiotherapy, which refers to the delivery of radiation at ultra-high dose-rates (UHDRs), has been demonstrated with various forms of radiation and is the subject of intense research and development recently, including the use of very high-energy electrons (VHEEs) to treat deep-seated tumors. Delivering FLASH radiotherapy in a clinical setting is expected to place high demands on real-time quality assurance and dosimetry systems. Furthermore, very high-energy electron research currently requires the transformation of existing non-medical accelerators into radiotherapy research environments. Accurate dosimetry is crucial for any such transformation. In this article, we assess the response of the MOSkin, developed by the Center for Medical Radiation Physics, which is designed for on-patient, real-time skin dose measurements during radiotherapy, and whether it exhibits dose-rate independence when exposed to 100 MeV electron beams at the Pulsed Energetic Electrons for Research (PEER) end-station. PEER utilizes the electron beam from a 100 MeV linear accelerator when it is not used as the injector for the ANSTO Australian Synchrotron. With the estimated pulse dose-rates ranging from (7.84±0.21)×105 Gy/s to (1.28±0.03)×107 Gy/s and an estimated peak bunch dose-rate of (2.55±0.06)×108 Gy/s, MOSkin measurements were verified against a scintillating screen to confirm that the MOSkin responds proportionally to the charge delivered and, therefore, exhibits dose-rate independence in this irradiation environment. © 2024 Cayley, Tan, Petasecca, Cutajar, Breslin, Rosenfeld and Lerch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
- ItemNeutron dosimeter development based on Medipix2(Institute of Electrical and Electronics Engineers (IEEE), 2010-12) Othman, MAR; Petasecca, M; Guatelli, S; Uher, J; Marinaro, DG; Prokopovich, DA; Reinhard, MI; Lerch, MLF; Jakubek, J; Pospisil, S; Rosenfeld, ABA novel neutron dosimetry system for avionics and space applications is described. The new dosimetric system is based on Medipix2, a high density silicon based pixilated detector with integrated readout and digital interface circuitry. Real time dose equivalent response to fast neutron fields with flattened energy response is achieved through the coupling of a structured variable thickness polyethylene (PE) over layer with the high density pixilated detector. Experimental results obtained to 14 MeV D-T and Am-Be neutron fields are described along with a comparison to results obtained with GEANT4 simulations. © 2010, Institute of Electrical and Electronics Engineers (IEEE)
- ItemA novel silicon microdosimeter using 3D sensitive volumes: modeling the response in neutron fields typical of aviation(IEEE Xplore Digital Library, 2014-08-04) Tran, LT; Guatelli, S; Prokopovich, DA; Petasecca, M; Lerch, MLF; Reinhard, MI; Zeigler, JF; Zaider, M; Rosenfeld, ABA 4th generation silicon microdosimeter has been designed by the Centre for Medical Radiation Physics (CMRP) at the University of Wollongong using three dimensional (3D) Sensitive Volumes (SVs). This new microdosimeter design has the advantage of well-defined 3D SVs as well as the elimination of lateral charge diffusion by removal of silicon laterally adjacent to the 3D SVs. The gaps between the sensitive volumes are to be backfilled with PolyMethyl MethAcrylate (PMMA) to produce a surrounding tissue equivalent medium. The advantage of this design avoids the generation of secondary particles from inactive silicon lateral to SVs. The response of the microdosimeter to the neutron field from , Pu-Be sources and an avionic radiation environment were simulated using the Geant4 Monte Carlo toolkit for design optimisation. The simulated energy deposition in the SVs from the neutron fields and microdosimetric spectra is presented. The simulation study shows a significant reduction in silicon nuclear recoil contribution to the energy deposition for the novel microdosimeter design. The reduction of silicon recoil events from outside of the SV’s will consequently reduce the uncertainty in the calculateddose equivalent. The simulations have demonstrated that a 3D silicon microdosimeter surrounded by PMMA can produce microdosimetric spectra similar to those of a tissue equivalent microdosimeter. © 2014, IEEE.
- ItemStudies of the characteristics of a silicon neutron sensor(Institute of Electrical and Electronics Engineers (IEEE), 2009-08-18) Anokhin, I; Zinets, O; Rosenfeld, AB; Lerch, MLF; Yudelev, M; Perevertaylo, VL; Reinhard, MI; Petasecca, MElectrical characteristics and neutron dosimetry properties of silicon based p-i-n diodes are presented in support of the applications in the sensors for beam monitoring and medical physics. Both the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of silicon planar p-i-n diode sensors with cylindrical geometry have been theoretically modeled and experimentally measured. The shifts of the forward and reverse diode characteristics of the sensors versus the neutron dose have been obtained. It is shown that the neutron irradiation caused shift of the forward voltage of the p-i-n diodes is proportional to the current at which it is measured in the case of the low level injection or to the square root of the current in the case of the high level injection. The C-V characteristics and the full depletion voltages of the diodes have been estimated and experimentally verified. It is shown that the sensitivity of planar cylindrical structures as neutron sensors can be optimized by the selection of the device geometry and the current at which the measurement is performed. © 2009, Institute of Electrical and Electronics Engineers (IEEE)