Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Pellegrini, E"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Combined experimental and computational study of oxide ion conduction dynamics in Sr2Fe2O5 brownmillerite
    (American Chemical Society, 2013-08-13) Auckett, JE; Studer, AJ; Pellegrini, E; Ollivier, J; Johnson, MR; Schober, H; Miiller, W; Ling, CD
    We report a detailed study of the dynamics of oxide ionic conduction in brownmillerite-type Sr2Fe2O5, including lattice anisotropy, based on neutron scattering studies of a large (partially twinned) single crystal in combination with ab initio molecular dynamics simulations. Single-crystal diffraction reveals supercell peaks due to long-range ordering among chains of corner-sharing FeO4 tetrahedra, which disappears on heating above 540 °C due to confined local rotations of tetrahedra. Our simulations show that these rotations are essentially isotropic, but are a precondition for the anisotropic motion that moves oxide ions into the tetrahedral layers from the octahedral layers, which we observe experimentally as a Lorentzian broadening of the quasielastic neutron scattering spectrum. This continual but incoherent movement of oxide ions in turn creates conduction pathways and activates long-range diffusion at the interface between layers, which appears to be largely isotropic in two dimensions, in contrast with previously proposed mechanisms that suggest diffusion occurs preferentially along the c axis.© 2013, American Chemical Society.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback