Browsing by Author "Pearce, JK"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCooper Basin REM gas shales after CO2 storage or acid reactions: metal mobilisation and methane accessible pore changes(Elsevier, 2023-05-15) Pearce, JK; Blach, T; Dawson, GKW; Southam, G; Paterson, DJ; Golding, SD; Bahadur, J; Melnichenko, YB; Rudolph, VShale - water - CO2 reactions may occur during CO2 geological storage, enhanced gas recovery, enhanced oil recovery, or supercritical CO2 fracturing. Shale-acid reactions occur during fracturing or acid stimulation. The mobilisation of metals from these processes can be an environmental concern if production water leaks or is released at surface. In addition, reactions may cause changes at the pore scale and affect gas or fluid flow. Three gas shales from the Australian Cooper Basin REM sequence were characterised for metals in minerals by synchrotron X-ray fluorescence microscopy. Metals including Zn, As, Ni, Cr were hosted in sphalerite associated with organic matter, Pb was in pyrite cement, and Mn was hosted in siderite. The shales were separately reacted with brine and supercritical CO2, with CO2-SO2, with dilute HCl, or with N2 at 100 °C and 20 MPa in batch reactors. The solution pH decreased during mineral reactions releasing metals to solution with the general concentrations from reaction with HCl > CO2-SO2 > CO2 > N2 and brine. Of the total available Pb, As, Li, and Zn in the shales, from 0 to 17%, 0.3 to 23%, 3 to 13%, and 0.4 to 28% was released to solution respectively. Corrosion of siderite and ankerite was observed after the CO2 reactions, with precipitation of Fe-oxides. After CO2-SO2 reaction siderite and ankerite were dissolved with pyrite, barite, and Fe-rich precipitates. HCl reactions resulted in complete dissolution of carbonates, with dissolution pits and no mineral precipitation observed. The changes to the fractions of gas accessible mesopores were characterised by small angle neutron scattering (SANS). The Epsilon Formation had the greatest fraction of open accessible pores in the SANS range of 10 to 150 nm, followed by the Murteree and Roseneath shale samples. After CO2 or CO2-SO2 reactions a small decrease in pore accessibility was more pronounced in the Murteree and Roseneath shales, consistent with mineral precipitation. HCl reaction resulted in opening of pores at 150 nm and closing of the smallest measured pores at 10 nm. Metals were mobilised from siderite, ankerite and sulphide minerals mainly, and were dependent on the mineral and metal content but also on the injected gas stream or fluid composition. CO2 based fluids may result in cleaner flow back water, than HCl based fluids. Geochemical reactions during CO2 storage or acid treatment in reactive shales cause pore changes that can affect gas migration. Mineral precipitation during CO2 and CO2-SO2 reactions can result in favourable self-sealing. © 2023 The Authors. Published by Elsevier B.V. Open Access - CC-BY.
- ItemPredicted CO2 water rock reactions in naturally altered CO2 storage reservoir sandstones, with interbedded cemented and coaly mudstone seals(Elsevier, 2022-03-15) Pearce, JK; Dawson, GW; Golding, SD; Southam, G; Paterson, DJ; Brink, F; Underschultz, JRGeological storage of CO2 captured from industrial processes such as coal combustion or from direct air capture is part of the transition to low emissions. The Jurassic Precipice Sandstone of the southern Surat Basin, Queensland, Australia, is undergoing feasibility studies for industrial scale CO2 geological storage, however regional data has so far been lacking. Precipice Sandstone reservoir drill core samples from the Southwood 1 and Tipton 153 wells in the southern Surat Basin include favourably quartz rich sandstone regions with quartz grain fracturing. A mudstone layer is also present in the reservoir. The overlying lower section of the Evergreen Formation seals consist of clay rich sandstones, interbedded mudstones, coal layers, Fe-Mg-Mn siderite, and Mg-calcite cemented sandstones. K-feldspars are weathered creating localised secondary porosity and pore filling kaolinite and illite. Layers of coal, pore filling cements, and framework grain compaction introduce vertical heterogeneity. Heavy minerals including pyrite, mixed composition sulphides, and barite are associated with disseminated coals in mudstones. Precipice Sandstone mercury intrusion porosities (MIP) ranged from 9 to 22% with favourably low reservoir injection threshold pressures, and the QEMSCAN measured open porosity between 2 and 22%. Evergreen Formation seal porosities were 7.5 to 16% by MIP or 1 to 19% by QEMSCAN, with the smallest pore throat distribution associated with the low permeability coal rich mudstone. Synchrotron XFM shows Rb mainly hosted in K-feldspars and muscovite, with metals including Mn mainly hosted in siderite. Zn and As are present in sulphides; and calcite and apatite cements mainly hosted Sr. Twenty kinetic geochemical CO2-water-rock models were run for 30 and 1000 years with Geochemist Workbench, with calcite and siderite initially dissolving. In the Precipice Sandstone reservoir variable alteration of carbonates, feldspars and chlorite to kaolinite, silica, siderite and smectite were predicted with the pH remaining below 5.5. CO2 was mineral trapped through alteration of chlorite to siderite in three of the four cases, with −0.02 to 1.43 kg/m3 CO2 trapped after 1000 years. In the calcite and siderite cemented Evergreen Formation seal, plagioclase conversion to ankerite trapped the most CO2 with 2.6 kg/m3 trapped after 1000 years. The Precipice Sandstone in both wells appears to be generally suitable as a storage reservoir, with mineral trapping predicted to mainly occur in the overlying lower Evergreen Formation and in interbedded mudstones. Heterogeneity in interbedded sandstone, mudstone, and coal layers are likely to act as baffles to CO2 and encourage mineral trapping. Quartz grain fractures may influence preferential migration pathways in the reservoir but this would need future experimental investigation. Experimental CO2 water rock reactions to understand porosity and permeability changes were out of scope here but are recommended in future validation, along with investigating the potential for CO2 adsorption trapping in coal and mudstone layers. © 2022 Elsevier B.V. All rights reserved.