Browsing by Author "Paul, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCritical deposition height for sustainable restoration via laser additive manufacturing(Springer Nature, 2013-10-03) Paul, S; Singh, R; Yan, W; Samajdar, I; Paradowska, AM; Thool, K; Reid, MLaser material deposition based restoration of high-value components can be a revolutionary technology in remanufacturing. The deposition process induces residual stresses due to thermomechanical behavior and metallurgical transformations. The presence of tensile residual stresses in the deposited layer will compromise the fatigue life of the restored component. We have developed a novel fully coupled metallurgical, thermal and mechanical (metallo-thermomechanical) model to predict residual stresses and identified a critical deposition height, which ensures compressive residual stresses in the deposited layer. Any lower deposition height will result in tensile residual stresses and higher deposition height will result in excessive dilution (substrate melting). We have validated the model using neutron and micro-focus X-ray diffraction measurements. This study highlights that the critical deposition height corresponds to the minimum cooling rate during solidification. It addresses one of the major outstanding problems of additive manufacturing and paves a way for “science-enabled-technology” solutions for sustainable restoration/remanufacturing. © 2021 Springer Nature Limited
- ItemNatural and regenerated saltmarshes exhibit similar soil and belowground organic carbon stocks, root production and soil respiration(Springer Nature Limited, 2019-04-10) Santini, NS; Lovelock, CE; Hua, Q; Zawadzki, A; Mazumder, D; Mercer, TR; Muñoz-Rojas, A; Hardwick, SA; Madala, BS; Cornwell, W; Thomas, T; Marzinelli, EM; Adam, P; Paul, S; Vergés, ASaltmarshes provide many valuable ecosystem services including storage of a large amount of ‘blue carbon’ within their soils. To date, up to 50% of the world’s saltmarshes have been lost or severely degraded primarily due to a variety of anthropogenic pressures. Previous efforts have aimed to restore saltmarshes and their ecosystem functions, but the success of these efforts is rarely evaluated. To fill this gap, we used a range of metrics, including organic carbon stocks, root production, soil respiration and microbial communities to compare natural and a 20-year restoration effort in saltmarsh habitats within the Sydney Olympic Park in New South Wales, Australia. We addressed four main questions: (1) Have above- and belowground plant biomass recovered to natural levels? (2) Have organic carbon stocks of soils recovered? (3) Are microbial communities similar between natural and regenerated saltmarshes? and (4) Are microbial communities at both habitats associated to ecosystem characteristics? For both soil organic carbon stocks and belowground biomass, we found no significant differences between natural and regenerated habitats (F(1,14) = 0.47, p = 0.5; F(1,42) = 0.08, p = 0.76). Aboveground biomass was higher in the natural habitat compared to the regenerated habitat (F(1,20) = 27.3, p < 0.0001), which may result from a site-specific effect: protection from erosion offered by a fringing mangrove forest in the natural habitat but not the regenerated habitat. Our microbial community assessment indicated that restored and natural saltmarsh habitats were similar at a phylum level, with the exception of a higher proportion of Proteobacteria in the rhizosphere of saltmarshes from the regenerated habitat (p < 0.01). Abundance of both Desulfuromonas and Geobacter was associated with high carbon and nitrogen densities in soils indicating that these genera may be key for the recovery of ecosystem characteristics in saltmarshes. Our restored and natural saltmarsh soils store at 30 cm depth similar levels of organic carbon: 47.9 Mg OC ha−1 to 64.6 Mg OC ha−1. Conservation of urban saltmarshes could be important for ‘blue carbon’ programmes aimed at mitigating atmospheric carbon dioxide. © 2019 Springer Science+Business Media, LLC, part of Springer Nature