Browsing by Author "Patel, VI"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemThe influence of constitutive material models on accumulated plastic strain in finite element weld analyses(Elsevier, 2015-09-01) Muránsky, O; Hamelin, CJ; Patel, VI; Braham, CRecent studies in computational weld mechanics have revealed the importance of the material plasticity model when predicting weld residual stresses. The present work seeks to extend this level of understanding to include the effects of the assumed material annealing behaviour, particularly when modelling multi-pass welds that comprise several thermo-mechanical loading cycles. A series of numerical analyses are performed to examine the variability in predicted residual stress profiles for different material models, using a validated finite element model for a three-pass slot weld in AISI 316LN austenitic steel. The material models consider both the work hardening and annealing assumptions for the chosen material. Model sensitivity is established not only from a weld residual stress perspective, but also from an assessment of the post-weld plastic strain accumulated in the weldment. Predictions are compared with indirect measurements acquired using cross-weld micro-hardness maps taken from benchmark specimens. Sensitivity studies reveal that the choice of annealing behaviour will have a significant impact on plastic flow predictions, which is dependent on the annealing temperature specified. Annealing assumptions will have a varying impact on the weld residual stress predictions, such that the extent of sensitivity is dependent on the plasticity model chosen. In contrast, the choice of plasticity model will have a significant effect on the predicted weld residual stresses, but relatively little effect on predictions of equivalent plastic strain. © 2015 Elsevier Ltd.
- ItemNonlinear analysis of axially loaded circular concrete-filled stainless steel tubular short columns(Elsevier, 2014-10) Patel, VI; Liang, QQ; Hadi, MNSExperiments show that the ultimate compressive strength of stainless steel is much higher than its tensile strength. The full-range two-stage constitutive model for stainless steels assumes that stainless steels follow the same stress–strain behavior in compression and tension, which may underestimate the compressive strength of stainless steel tubes. This paper presents a fiber element model incorporating the recently developed full-range three-stage stress–strain relationships based on experimentally observed behavior for stainless steels for the nonlinear analysis of circular concrete-filled stainless steel tubular (CFSST) short columns under axial compression. The fiber element model accounts for the concrete confinement effects provided by the stainless steel tube. Comparisons of computer solutions with experimental results published in the literature are made to examine the accuracy of the fiber element model and material constitutive models for stainless steels. Parametric studies are conducted to study the effects of various parameters on the behavior of circular CFSST short columns. A design model based on Liang and Fragomeni's design formula is proposed for circular CFSST short columns and validated against results obtained by experiments, fiber element analyses, ACI-318 codes and Eurocode 4. The fiber element model incorporating the three-stage stress–strain relationships for stainless steels is shown to simulate well the axial load–strain behavior of circular CFSST short columns. The proposed design model gives good predictions of the experimental and numerical ultimate axial loads of CFSST columns. It appears that ACI-318 codes and Eurocode 4 significantly underestimate the ultimate axial strengths of CFSST short columns. © 2014 Elsevier Ltd.
- ItemA validated numerical model for residual stress predictions in an eight-pass-welded stainless steel plate(Trans Tech Publications, 2014-02-06) Patel, VI; Muránsky, O; Hamelin, CJ; Olson, MD; Hill, MR; Edwards, LWelding processes create a complex transient state of temperature that results in post-weld residual stresses. The current work presents a finite element (FE) analysis of the residual stress distribution in an eight-pass slot weld, conducted using a 316L austenitic stainless steel plate with 308L stainless steel filler metal. A thermal FE model is used to calibrate the transient thermal profile applied during the welding process. Time-resolved body heat flux data from this model is then used in a mechanical FE analysis to predict the resultant post-weld residual stress field. The mechanical analysis made use of the Lemaitre-Chaboche mixed isotropic-kinematic work-hardening model to accurately capture the constitutive response of the 316L weldment during the simulated multi-pass weld process, which results in an applied cyclic thermo-mechanical loading. The analysis is validated by contour method measurements performed on a representative weld specimen. Reasonable agreement between the predicted longitudinal residual stress field and contour measurement is observed, giving confidence in the results of measurements and FE weld model presented.