Browsing by Author "Parker, SF"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe instrument suite of the European Spallation Source(Elsevier B. V., 2020-01-10) Andersen, KH; Argyriou, DN; Jackson, AJ; Houston, J; Henry, PF; Deen, PP; Toft-Petersen, R; Beran, P; Strobl, M; Arnold, T; Wacklin-Knecht, H; Vivanco, R; Parker, SF; Gussen, A; Kanaki, K; Scionti, G; Olsen, MA; Arai, M; Schmakat, Ph; Lechner, RE; Niedermayer, Ch; Schneider, H; Zanetti, M; Petrillo, C; Moreira, FY; Stepanyan, S; Luna, P; Calzada, E; Stahn, J; Voigt, J; Dupont, T; Hanslik, R; Siemers, DJ; Udby, L; Chowdhury, MAH; Klauser, Ch; Rouijaa, M; Lehmann, E; Heynen, A; Bustinduy, I; Schwaab, A; Raspino, D; Scatigno, C; del Moral, OG; Kiehn, R; Aprigliano, G; Zanatta, M; Huerta, M; Bellissima, S; Lerche, M; Holm-Dahlin, S; Huerta, M; Christensen, NB; Lohstroh, W; Gorini, G; Fenske, J; Hansen, UB; Klauser, C; Rodrigues, S; Müller, M; Gorini, G; Bovo, C; Hall-Wilton, R; Fabrèges, X; Siemers, DJ; Khaplanov, A; Tsapatsaris, N; Taylor, J; Christensen, M; Schefer, J; Woracek, R; Tozzi, P; Müller, M; Carlsen, H; Olsen, MA; Orecchini, A; Di Fresco, L; Paciaroni, A; Bovo, C; Magán, M; Hauback, BC; Elmer, J; Heenan, RK; Piscitelli, F; Masi, F; Bakedano, G; Klimko, S; De Bonis, A; Fedrigo, A; Lukáš, P; Frielinghaus, H; Stahn, J; Schweika, W; Markó, M; Pfeiffer, D; Kirstein, O; Di Fresco, L; Schreyer, A; Orszulik, A; Nowak, G; Butterweck, S; Šaroun, J; Paciaroni, A; Kolevatov, R; Lehmann, EH; Filges, U; Schreyer, A; Koenen, M; Bustinduy, I; Magán, M; Feygenson, M; Cooper, JFK; Abad, E; Senesi, R; Longeville, S; Llamas-Jansa, I; Schulz, M; Birk, JO; Sharp, M; Galsworthy, P; Šaroun, J; Martínez, J; Hiess, A; Holm-Dahlin, S; Filges, U; Pullen, SA; Guyon Le Bouffy, J; Schefer, J; Lukáš, P; Udby, L; Kozielewski, T; Niedermayer, C; Sacchetti, F; Hartl, M; Jaksch, S; Salhi, Z; Brückel, T; Aguilar, J; Aguilar, J; Seifert, M; Bordallo, HN; Robillard, T; Villacorta, FJ; Herranz, I; del Rosso, L; Hauback, BC; Orecchini, A; Fabrèges, G; Fenske, J; Neuhaus, J; Schillinger, B; Abad, E; Kittelmann, T; Lefmann, K; Seifert, M; Neuhaus, J; Herranz, I; Kolevatov, R; Annighöfer, B; Oksanen, E; Morgano, M; Laszlo, G; Freeman, PG; Kennedy, SJ; Bertelsen, M; Bellissima, S; Alba-Simionesco, C; Markó, M; Mezei, F; Chowdhury, M; Halcrow, W; Jestin, J; Lieutenant, K; Babcock, E; Rønnow, HM; Engels, R; del Moral, OG; Vickery, A; Rouijaa, M; Lavie, P; Petersson Årsköld, S; Glavic, A; Désert, S; Mannix, D; Scatigno, C; Petry, W; Christensen, NB; Violini, N; Villacorta, FJ; Porcher, F; Glavic, A; Scionti, G; Zanetti, M; Fernandez-Alonso, F; Rønnow, HM; Mosconi, M; Olsson, M; Stepanyan, S; Petrillo, C; del Rosso, L; Harbott, P; Sacchetti, F; Bertelsen, M; Kämmerling, H; Andreani, C; Schulz, M; Colognesi, D; Luna, P; Loaiza, L; Turner, D; Martínez, JL; Tartaglione, A; Sordo, F; Llamas-Jansa, I; Schmakat, P; Lechner, RE; Poqué, A; Fernandez-Alonso, F; Colognesi, D; Tartaglione, A; Morgano, M; Webb, N; Loaiza, L; Whitelegg, L; Petry, W; Iversen, K; Vivanco, R; Tozzi, P; Goukassov, A; Schillinger, B; Carlsen, H; Masi, F; Christensen, M; Nowak, G; Nightingale, J; Schütz, S; Lopez, CI; Langridge, S; Schütz, S; Nagy, G; Zanatta, M; Andreani, C; Lefmann, K; Lohstroh, W; Mosconi, M; Senesi, R; Stefanescu, I; Bakedano, G; Hagen, ME; Wischnewski, A; Bourges, P; Hansen, UB; De Bonis, A; Kiehn, R; Parker, SF; Iversen, K; Sordo, F; Freeman, PG; Birk, JO; Rodríguez, DM; Ansell, SAn overview is provided of the 15 neutron beam instruments making up the initial instrument suite of the European Spallation Source (ESS), and being made available to the neutron user community. The ESS neutron source consists of a high-power accelerator and target station, providing a unique long-pulse time structure of slow neutrons. The design considerations behind the time structure, moderator geometry and instrument layout are presented. The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline, two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance and scientific drivers of each of these instruments are described. All of the instruments are designed to provide breakthrough new scientific capability, not currently available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth of the scientific impact of the early years of the ESS, and provide a solid base for completion and further expansion of the facility. © 2020 The Authors. Published by Elsevier B.V. Open access article under the CC BY-NC-ND license.
- ItemLattice dynamics of hydrogenated austenitic steels(Australian Institute of Physics, 2005-01-31) Danilkin, SA; Hoelzel, M; Udovic, TJ; Rameriz-Cuesta, T; Parker, SF; Wipf, H; Fuess, HWe investigated hydrogen vibrations in of Fe 18Cr-10Ni and Fe-25Cr-20Ni austenitic steels doped in H gas atmosphere at pressures up to 7 GPa. Measurements were performed with neutron spectrometers FANS at NIST and TOSCA at ISIS. Experiments show that vibrational energy of H atoms in studied steels decreases from 132 meV at H/Me=0.0033 to 111 meV at H/Me=0.9 due to lattice dilatation. The hydrogen peaks are broadened. At H contents from 0.003 to 0.4-where the single broad peak is observed-the broadening is most probably connected with the Me-H force constant disorder. At H/Me>0.4-0.5-where H-peak has the two-component structure-the H-H interaction becomes important resulting in the dispersion of the optical phonon branches.