Browsing by Author "O'Connor, BH"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemComparison of thermal stability in MAX 211 and 312 phases(Insitute of Physics, 2010-05-03) Pang, WK; Low, IM; O'Connor, BH; Studer, AJ; Peterson, VK; Sun, ZM; Palmquist, JPThe susceptibility of four MAX phases (Ti 2 AlC, Cr 2 AlC, Ti 3 AlC 2 , and Ti 3 SiC 2 ) to high-temperature thermal dissociation in vacuum has been investigated using in-situ neutron diffraction. In high vacuum, these phases decomposed above 1400°C through the sublimation of M and A elements, forming a surface coating of MC. The apparent activation energies for the decomposition of sintered Ti 3 SiC 2 , Ti 3 AlC 2 , and Ti 2 AlC were determined to be 179.3, -71.9, and 85.7 kJ mol −1 , respectively. The spontaneous release of Ti 2 AlC and TiC from de-intercalation during decomposition of Ti 3 AlC 2 resulted in a negative activation energy.© 2010, Insitute of Physics
- ItemIn situ diffraction study of thermal decomposition in Maxthal Ti2AlC(Elsevier, 2011-01-05) Pang, WK; Low, IM; O'Connor, BH; Peterson, VK; Studer, AJ; Palmquist, JPThe thermal stability of Ti2AlC at elevated temperature (1000–1550°C) in vacuum has been investigated using in situ neutron diffraction. At temperatures above 1400°C, Ti2AlC became unstable and began to decompose via sublimation of Al, resulting in a porous surface layer of TiCx being formed. The apparent activation energy for Ti2AlC decomposition was determined to be 85.7 ± 2.6 kJ mol−1. The kinetics of isothermal phase decomposition was modelled using least-squares linear regression fitting and the Avrami equation. The corresponding least-squares regression exponent (R2) and Avrami constants (k and n) for isothermal decomposition were determined to be 0.89, 0.268 min−n and 0.1, respectively. © 2011, Elsevier Ltd.