Browsing by Author "Nguyen, T"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemNeutron optics upgrades to the residual stress diffractometer, KOWARI(Materials Research Forum LLC, 2016-07-03) Reid, M; Olsen, SR; Luzin, V; New, M; Booth, N; Clowes, D; Nguyen, T; Franceschini, F; Ogrin, A; Pangelis, S; Paradowska, AM; Larkin, N; Pan, Z; Hoye, N; Suzuki, HIn the last 5 years a number of significant enhancements have been implemented on the neutron beam strain scanner Kowari at the OPAL reactor in Sydney Australia. These changes have resulted in reduced beam time losses when conducting experiments due to sample and stage alignment, and optics and sample changes. There have been 3 projects, starting in 2011 with a new manual slit system design and collision recovery system, in 2013 with a series of radial collimators and finally with the delivery. © The Authors
- ItemTransforming spirulina maxima biomass into ultrathin bioactive coatings using an atmospheric plasma jet: a new approach to healing of infected wounds(Wiley, 2023-09-15) Pham, T; Nguyen, TT; Nguyen, NH; Hayles, A; Li, WS; Pham, DQ; Nguyen, CK; Nguyen, T; Vongsvivut, JP; Ninan, N; Sabri, YM; Zhang, W; Vasiliev, K; Truong, VKThe challenge of wound healing, particularly in patients with comorbidities such as diabetes, is intensified by wound infection and the accelerating problem of bacterial resistance to current remedies such as antibiotics and silver. One promising approach harnesses the bioactive and antibacterial compound C-phycocyanin from the microalga Spirulina maxima. However, the current processes of extracting this compound and developing coatings are unsustainable and difficult to achieve. To circumvent these obstacles, a novel, sustainable argon atmospheric plasma jet (Ar-APJ) technology that transforms S. maxima biomass into bioactive coatings is presented. This Ar-APJ can selectively disrupt the cell walls of S. maxima, converting them into bioactive ultrathin coatings, which are found to be durable under aqueous conditions. The findings demonstrate that Ar-APJ-transformed bioactive coatings show better antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, these coatings exhibit compatibility with macrophages, induce an anti-inflammatory response by reducing interleukin 6 production, and promote cell migration in keratinocytes. This study offers an innovative, single-step, sustainable technology for transforming microalgae into bioactive coatings. The approach reported here has immense potential for the generation of bioactive coatings for combating wound infections and may offer a significant advance in wound care research and application. © 2023 The Authors. Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License.