Browsing by Author "Neville, SM"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemDual-supramolecular contacts induce extreme Hofmann framework distortion and multi-stepped spin-crossover(Royal Society of Chemistry, 2021-01-13) Ahmed, M; Brand, HEA; Peterson, VK; Clegg, JK; Kepert, CJ; Price, JR; Powell, BJ; Neville, SMAn extended nitro-functionalised 1,2,4-triazole ligand has been used to induce considerable lattice distortion in a 2-D Hofmann framework material via competing supramolecular interactions. Single crystal X-ray diffraction analyses on [Fe3(N-cintrz)6(Pd(CN)4)3]·6H2O (N-cintrz: (E)-3-(2-nitrophenyl)acrylaldehyde) reveal a substantial deviation from a regular Hofmann structure, in particular as the intra- and inter-layer contacts are dominated by hydrogen-bonding interactions rather than the typical π-stacking arrays. Also, the 2-D Hofmann layers show an assortment of ligand conformations and local FeII coordination environments driven by the optimisation of competing supramolecular contacts. Temperature-dependent magnetic susceptibility measurements reveal a two-step spin crossover (SCO) transition. Variable temperature structural analyses show that the two crystallographically distinct FeII centres, which are arranged in stripes (2[thin space (1/6-em)]:[thin space (1/6-em)]1 ratio) within each Hofmann layer, undergo a cooperative HS ↔ HS/LS ↔ LS (HS = high spin, LS = low spin) transition without periodic spin-state ordering. The mismatch between crystallographic (2[thin space (1/6-em)]:[thin space (1/6-em)]1) and spin-state (1[thin space (1/6-em)]:[thin space (1/6-em)]1) periodicity at the HS[thin space (1/6-em)]:[thin space (1/6-em)]LS step provides key insight into the competition (frustration) between elastic interactions and crystallographically driven order. © The Royal Society of Chemistry 2021
- ItemGuest removal and external pressure variation induce spin crossover in halogen-functionalized 2-D Hofmann frameworks(American Chemical Society, 2020-09-27) Brennan, AT; Zenere, KA; Brand, HEA; Price, JR; Bhadbhade, MM; Turner, GF; Moggach, SA; Valverde-Muñoz, FJ; Real, JA; Clegg, JK; Kepert, CJ; Neville, SMThe effect of halogen functionalization on the spin crossover (SCO) properties of a family of 2-D Hofmann framework materials, [Fe(II)Pd(CN)4(thioX)2]·2H2O (X = Cl and Br; thioCl = (E)-1-(5-chlorothiophen-2-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine) and thioBr = (E)-1-(5-bromothiophen-2-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine)), is reported. Inclusion of both the chloro- and bromo-functionalized ligands into the Hofmann-type frameworks (1Cl·2H2O and 2Br·2H2O) results in a blocking of spin-state transitions due to internal chemical pressure effects derived by the collective steric bulk of the halogen atoms and guest molecules. Cooperative one-step SCO transitions are revealed by either guest removal or the application of external physical pressure. Notably, removal of solvent water reveals a robust framework scaffold with only marginal variation between the solvated and desolvated structures (as investigated by powder and single crystal X-ray diffraction). Yet, one-step complete SCO transitions are revealed in 1Cl and 2Br with a transition temperature shift between the analogues due to various steric, structural, and electronic considerations. SCO can also be induced in the solvated species, 1Cl·2H2O and 2Br·2H2O, with the application of physical pressure, revealing a complete one-step SCO transition above 0.62 GPa (as investigated by magnetic susceptibility and single crystal X-ray diffraction measurements). © 2020 American Chemical Society
- ItemHierarchical spin-crossover cooperativity in hybrid 1D chains of Fe(II)-1,2,4-triazole trimers linked by [Au(CN)2]− bridges(John Wiley & Sons, Inc, 2021-02-04) Ezzedinloo, L; Zenere, KA; Xie, Z; Ahmed, M; Scottwell, S; Bhadbhade, MM; Brand, HEA; Clegg, JK; Hua, C; Sciortino, NF; Parker, LC; Powell, BJ; Kepert, CJ; Neville, SMForemost, practical applications of spin-crossover (SCO) materials require control of the nature of the spin-state coupling. In existing SCO materials, there is a single, well-defined dimensionality relevant to the switching behavior. A new material, consisting of 1,2,4-triazole-based trimers coordinated into 1D chains by [Au(CN)2]− and spaced by anions and exchangeable guests, underwent SCO defined by elastic coupling across multiple dimensional hierarchies. Detailed structural, vibrational, and theoretical studies conclusively confirmed that intra-trimer coupling was an order of magnitude greater than the intramolecular coupling, which was an order of magnitude greater than intermolecular coupling. As such, a clear hierarchy on the nature of elastic coupling in SCO materials was ascertained for the first time, which is a necessary step for the technological development of molecular switching materials. © 2021 Wiley-VCH GmbH
- ItemPreparation of pyrite concentrate powder from the Thackaringa mine for quantitative phase analysis using x-ray diffraction(International Union of Crystallography, 2022-12) McDougall, H; Hibberd, MF; Tong, A; Neville, SM; Peterson, VK; Didier, CThe quantitative phase analysis using X-ray diffraction of pyrite ore concentrate samples extracted from the Thackaringa mine is problematic due to poor particle statistics, microabsorption and preferred orientation. The influence of sample preparation on these issues has been evaluated, with ball milling of the powder found most suitable for accurate and precise quantitative phase analysis. The milling duration and other aspects of sample preparation have been explored, resulting in accurate phase reflection intensities when particle sizes are below 5 µm. Quantitative phase analysis on those samples yielded precise phase fractions with standard deviations below 0.3 wt%. Some discrepancy between the elemental composition obtained using X-ray powder diffraction data and that determined using wavelength-dispersive X-ray fluorescence was found, and is thought to arise from unaccounted for crystalline phase substitution and the possible presence of an amorphous phase. This study provides a methodology for the precise and accurate quantitative phase analysis of X-ray powder diffraction data of pyrite ore concentrate from the Thackaringa mine and a discussion of the limitations of the method. The optimization process reveals the importance of confirming reproducibility on new samples, with as much prior knowledge as possible. © International Union of Crystallography.