Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nagarajah, R"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Glutamate potentiates lipopolysaccharide–stimulated interleukin-10 release from neonatal rat spinal cord astrocytes
    (Elsevier, 2012-04-05) Werry, EL; Liu, GJ; Lovelace, MD; Nagarajah, R; Bennett, MR
    Interleukin-10 (IL-10) has important anti-inflammatory effects and can be protective in inflammatory conditions, such as chronic pain and infection. Exploring factors that modulate IL-10 levels may provide insight into pathomechanisms of inflammatory conditions and may provide a method of neuroprotection during these conditions. Lipopolysaccharide (LPS) stimulation of astrocytes is a source of IL-10; hence, it is of interest to investigate factors that modulate this process. Glutamate is present in increased concentrations in inflammatory conditions, and astrocytes also express glutamate receptors. The present study, therefore, investigated whether glutamate modulates LPS stimulation of IL-10 release from neonatal spinal cord astrocytes. Enzyme-linked immunosorbent assays (ELISAs) were used to quantify IL-10 release from cultured neonatal spinal cord astrocytes, and reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure IL-10 mRNA expression. Glutamate (1 mM) significantly increased LPS (1 μg/ml)-stimulated IL-10 release from astrocytes by 166% and significantly upregulated IL-10 mRNA levels. Glutamate synergistically signaled through metabotropic glutamate receptor subgroups and the phospholipase C signaling pathway. Spinal cord astrocytes may, therefore, play a larger anti-inflammatory role than first thought in situations where glutamate and a high concentration of Toll-like receptor 4 (TLR4) agonists are present. © 2012 IBRO. Published by Elsevier Ltd.
  • No Thumbnail Available
    Item
    Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate
    (Elsevier, 2011-02-17) Werry, EL; Liu, GJ; Lovelace, MD; Nagarajah, R; Hickie, IB; Bennett, MR
    Interleukin-10 (IL-10) is a cytokine with important endogenous and therapeutic anti-inflammatory effects. Given this, it is of interest to investigate factors that modulate IL-10 levels in the central nervous system. IL-10 is released after lipopolysaccharide (LPS) stimulation of microglia. Microglia also express functional glutamate receptors and in inflammatory conditions are exposed to increased levels of glutamate. The aim of this research, then, is to investigate whether glutamate can modulate lipopolysaccharide stimulation of IL-10 release from neonatal rat spinal cord microglia. Enzyme-linked immunosorbent assays (ELISAs) were used to quantify IL-10 release from cultured neonatal spinal cord microglia and reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure IL-10 mRNA expression. Glutamate (1 mM) significantly increased LPS (1 μg/ml)-stimulated IL-10 release from microglia by 172% (EC50 of 103 μM) and significantly upregulated IL-10 mRNA levels. Glutamate potentiated LPS-stimulated IL-10 release by binding all subtypes of glutamate receptor. These results show that glutamate substantially increases the release of an anti-inflammatory cytokine from neonatal spinal cord microglia activated by a high concentration of LPS. © 2011, Elsevier Ltd.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize