Browsing by Author "Moubaraki, B"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemMagnetic structure of the quasi-two-dimensional antiferromagnet NiPS 3(American Physical Society, 2015-12-07) Wildes, AR; Simonet, V; Ressouche, E; McIntyre, GJ; Avdeev, M; Suard, E; Kimber, SAJ; Lançon, D; Pepe, G; Moubaraki, B; Hicks, TJThe magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3 has been determined by magnetometry and a variety of neutron diffraction techniques. The experiments show that the samples must be carefully handled, as gluing influences the magnetometry measurements while preferred orientation complicates the interpretation of powder diffraction measurements. Our global set of consistent measurements show numerous departures from previously published results. We show that the compound adopts a k = [010] antiferromagnetic structure with the moment directions mostly along the a axis, and that the paramagnetic susceptibility is isotropic. The critical behavior was also investigated through the temperature dependence of the magnetic Bragg peaks below the Néel temperature. ©2015 American Physical Society
- ItemNew family of ferric spin clusters incorporating redox-active ortho-dioxolene ligands.(American Chemical Society, 2009-08-17) Mulyana, Y; Nafady, A; Mukherjee, A; Bircher, R; Moubaraki, B; Murray, KS; Bond, AM; Abrahams, BF; Boskovic, CSeven new di-, tri-, tetra-, and hexanuclear iron complexes that incorporate a polydentate Schiff base and variously substituted catecholate ligands have been synthesized from the trinuclear precursor [Fe3(OAc)3(L)3] (1), where LH2 = 2-[[(2-hydroxyethyl)imino]phenylmethyl]-phenol. These were isolated as the compounds [Fe3(OAc)(Cat)(L)3] (2), [Fe6(OAc)2(Cat)4(L)4] (3), [Fe4(3,5-DBCat)2(L)4] (4), [Bu4N][Fe4(OAc)(3,5-DBCat)4(L)2] (5a, 5- is the complex monoanion [Fe4(OAc)(3,5-DBCat)4(L)2]-), [Fe4(OAc)(3,5-DBCat)3(3,5-DBSQ)(L)2] (6), [Fe2(Cl4Cat)2(L)(LH2)(H2O)] (7), and [Et3NH]2[Fe2(Cl4Cat)2(L)2] (8a, 8²- is the complex dianion [Fe2(Cl4Cat)2(L)2]2-), where CatH2 = catechol; 3,5- DBCatH2 = 3,5-di-tert-butyl-catechol; 3,5-DBSQH = 3,5-di-tert-butyl-semiquinone, and Cl4CatH2 = tetrachlorocatechol. While compounds 2-4, 5a, 7, and 8a were obtained by directly treating 1 with the appropriate catechol, compound 6 was synthesized by chemical oxidation of 5a. These compounds have been characterized by single crystal X-ray diffraction, infrared and UV-visible spectroscopy, voltammetry, UV-visible spectroelectrochemistry, andmagnetic susceptibility and magnetization measurements. An electrochemical study of the three tetranuclear complexes (4, 5-, and 6) reveals multiple reversible redox processes due to the o-dioxolene ligands, in addition to reductive processes corresponding to the reduction of the iron(III) centers to iron(II). A voltammetric study of the progress of the chemical oxidation of compound 5a, together with a spectroelectrochemical study of the analogous electrochemical oxidation, indicates that there are two isomeric forms of the one-electron oxidized product. A relatively short-lived neutral species (5) that possesses the same ligand arrangement as complex 5- is the kinetic product of both chemical and electrochemical oxidation. After several hours, this species undergoes a significant structural rearrangement to convert to complex 6, which appears to be largely driven by the preference for the 3,5-DBSQ- ligand to bind in a non-bridging mode. Variable temperature magnetic susceptibilitymeasurements for compounds 3, 4, 5a, 6, 7, and8a reveal behavior dominated by pairwise antiferromagnetic exchange interactions, giving rise to a poorly isolated S = 0 ground state spin for compound 3, well-isolated S = 0 ground state spins for complexes 4, 5-, 7 and 8²-, and a well-isolated S = 1/2 ground state spin for complex 6. The ground state spin values were confirmed by low temperature variable field magnetization measurements. The thermal variation of the magnetic susceptibility for compounds 3, 4, 5a, 6, 7, and 8a were fitted and/or simulated using the appropriate Hamiltonians to derive J values that are consistent with magnetostructural correlations that have been reported previously for alkoxobridged ferric complexes. © 2009, American Chemical Society
- ItemSingle-ion anisotropy and exchange coupling in cobalt( ii )-radical complexes: insights from magnetic and ab initio studies(Royal Society of Chemistry, 2019-10-07) Gransbury, GK; Boulon, ME; Mole, RA; Gable, RW; Moubaraki, B; Murray, KS; Sorace, L; Soncini, A; Boskovic, CThe concurrent effects of single-ion anisotropy and exchange interactions on the electronic structure and magnetization dynamics have been analyzed for a cobalt(II)-semiquinonate complex. Analogs containing diamagnetic catecholate and tropolonate ligands were employed for comparison of the magnetic behavior and zinc congeners assisted with the spectroscopic characterization and assessment of intermolecular interactions in the cobalt(II) compounds. Low temperature X-band (ν ≈ 9.4 GHz) and W-Band (ν ≈ 94 GHz) electron paramagnetic resonance spectroscopy and static and dynamic magnetic measurements have been used to elucidate the electronic structure of the high spin cobalt(II) ion in [Co(Me3tpa)(Br4cat)] (1; Me3tpa = tris[(6-methyl-2-pyridyl)methyl]amine, Br4cat2− = tetrabromocatecholate) and [Co(Me3tpa)(trop)](PF6) (2(PF6); trop− = tropolonate), which show slow relaxation of the magnetization in applied field. The cobalt(II)-semiquinonate exchange interaction in [Co(Me3tpa)(dbsq)](PF6)·tol (3(PF6)·tol; dbsq− = 3,5-di-tert-butylsemiquinonate, tol = toluene) has been determined using an anisotropic exchange Hamiltonian in conjunction with multistate restricted active space self-consistent field ab initio modeling and wavefunction analysis, with comparison to magnetic and inelastic neutron scattering data. Our results demonstrate dominant ferromagnetic exchange for 3+ that is of similar magnitude to the anisotropy parameters of the cobalt(II) ion and contains a significant contribution from spin–orbit coupling. The nature of the exchange coupling between octahedral high spin cobalt(II) and semiquinonate ligands is a longstanding question; answering this question for the specific case of 3+ has confirmed the considerable sensitivity of the exchange to the molecular structure. The methodology employed will be generally applicable for elucidating exchange coupling between orbitally-degenerate metal ions and radical ligands and relevant to the development of bistable molecules and their integration into devices. © The Royal Society of Chemistry 2019. Open Access CC-NC