Browsing by Author "Menking, J"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemTowards 14C-dating of gases in ice cores – constraining the in situ cosmogenic 14C production rates by muons(Australian Nuclear Science and Technology Organisation, 2021-11-17) Dyonisius, MN; Petrenko, VV; Smith, AM; Hmiel, B; Neff, PD; Yang, B; Hua, Q; Place, PF; Menking, J; Shackleton, SA; Beaudette, R; Harth, CM; Kalk, M; Roop, H; Bereiter, B; Armanetti, C; Buizert, C; Schmitt, J; Brook, EJ; Severinghaus, JP; Weiss, RF; McConnell, JRRadiocarbon dating of glacial ice has been a longstanding goal in ice core science. In glacial ice, ¹⁴ C is incorporated mainly through trapping of ¹⁴ C-containing atmospheric gases (¹⁴ CO₂ , ¹⁴ CO, and ¹⁴ CH₄ ). However, ¹⁴ C in ice is also produced in situ, directly in the ice lattice from reactions with secondary cosmic rays. In situ ¹⁴ C in ice mostly accumulates after bubble close-off (generally at firn depths between 50-120 m) because almost all of the in situ produced ¹⁴ C in the firn column is lost to the atmosphere via diffusion. The in situ ¹⁴ C at corresponding close-off depths of most ice core sites is generally dominated by production from deep penetrating muons. Understanding the muogenic ¹⁴ C production rates is thus important to deconvolve the in situ cosmogenic and atmospheric ¹⁴ C signals in ice cores. In this study, we use measurements of ¹⁴ C in ancient ice (>50 kilo-annum before present, ka BP) from the Taylor Glacier ablation site, Antarctica to calibrate the muogenic ¹⁴ C production rates. We find that literature values are overestimated by factors of 5.7 (3.6-13.9, 95% confidence interval) and 3.7 (2.0-11.9 95% confidence interval) for negative muon capture and fast muon interactions respectively. Furthermore, the partitioning between the in situ ¹⁴ C species appears to be constant (¹⁴ CO:¹⁴ CO₂ ratio of 1:2, with small <0.2% contributions from ¹⁴ CH₄ ). Our results allow for future ice core ¹⁴ C studies to be potentially used for several applications, including absolute dating of gases and improving the ¹⁴ C calibration curve in periods where high-resolution tree ring data are not available.