Browsing by Author "Mendoza, DJ"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffect of temperature on the conformation and functionality of poly(N-isopropylacrylamide) (PNIPAM)-grafted nanocellulose hydrogels(Elsevier, 2023-12-15) Raghuwanshi, VS; Mendoza, DJ; Browne, C; Ayurini, M; Gervinskas, G; Hooper, JF; Mata, JP; Wu, CM; Simon, GP; Garnier, GHypothesis Poly(N-isopropylacrylamide) [PNIPAM]-grafted cellulose nanofibers (CNFs) are new thermo-responsive hydrogels which can be used for a wide range of applications. Currently, there is no clear understanding of the precise mechanism by which CNFs and PNIPAM interact together. Here, we hypothesize that the physical crosslinking of grafted PNIPAM on CNF inhibits the free movement of individual CNF, which increases the gel strength while sustaining its thermo-responsive properties. Experiments The thermo-responsive behaviour of PNIPAM-grafted CNFs (PNIPAM-g-CNFs), synthesized via silver-catalyzed decarboxylative radical polymerization, and PNIPAM-blended CNFs (PNIPAM-b-CNFs) was studied. Small angle neutron scattering (SANS) combined with Ultra-SANS (USANS) revealed the nano to microscale conformation changes of these polymer hybrids as a function of temperature. The effect of temperature on the optical and viscoelastic properties of hydrogels was also investigated. Findings Grafting PNIPAM from CNFs shifted the lower critical solution temperature (LCST) from 32 °C to 36 °C. Below LCST, the PNIPAM chains in PNIPAM-g-CNF sustain an open conformation and poor interaction with CNF, and exhibit water-like behaviour. At and above LCST, the PNIPAM chains change conformation to entangle and aggregate nearby CNFs. Large voids are formed in solution between the aggregated PNIPAM-CNF walls. In comparison, PNIPAM-b-CNF sustains liquid-like behaviour below LCST. At and above LCST, the blended PNIPAM phase separates from CNF to form large aggregates which do not affect CNF network and thus PNIPAM-b-CNF demonstrates low viscosity. Understanding of temperature-dependent conformation of PNIPAM-g-CNFs engineer thermo-responsive hydrogels for biomedical and functional applications. © 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.
- ItemModulating the isotopic hydrogen-deuterium exchange in functionalized nanocellulose to optimize SANS contrast(Elsevier, 2024-12) Raghuwanshi, VS; Mendoza, DJ; Mata, JP; Garnier, GFGContrast matching by isotopic exchange in cellulose allows visualizing functional groups, biomolecules, polymers and nanoparticles embedded in cellulosic composites. This isotopic exchange varies the scattering length density of cellulose to match its contrast with the background network. Here, contrast matching of microcrystalline-cellulose (MCC) and the functionalized nanocellulose-fiber (CNF) and cellulose nanocrystals (CNC) are elucidated by small angle neutron scattering (SANS). Results show no isotopic exchange occurs for the CNF surface functionalized with carboxyl nor for the CNC-High with a high sulfate groups concentration. Both CNC-Low, with low sulfate groups, and MCC exchange 1H with 1D in D2O. This is due to the high exchange probability of the labile C6 position primary -OH group. The structure of thermo-responsive poly-N-isopropylacrylamide (PNIPAM) chains grafted onto CNF (PNIPAM-grafted-CNF) was extracted by CNF contrast matching near the lower critical solution temperature. Contrast matching eradicates the CNF scattering to retain only the scattering from the grafted-PNIPAM chains. The coil to globule thermo-transition of PNIPAM was revealed by the power law variation from q−1.3 to q−4 in SANS. Isotopic exchange in functionalized cellulosic materials reveals the nano- and micro-scale structure of its individual components. This improved visualization by contrast matching can be extended to carbohydrate polymers to engineer biopharmaceutical and food applications. © 2024 The Authors. Published by Elsevier Ltd. - Open Access CC BY 4.0