Browsing by Author "Marques, FMB"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemFirst observation of the reversible O3↔P2 phase transition: crystal structure of the quenched high-temperature phase Na0.74Ni0.58Sb0.42O2(Elsevier, 2006-06-15) Smirnova, OA; Avdeev, M; Nalbandyan, VB; Kharton, VV; Marques, FMBAccording to thermal expansion data, O3-type phase NaxNi(1+x)/3Sb(2−x)/3O2 (x ≈ 0.8) undergoes at ca. 1270 K a reversible transition to a less dense form. The high-temperature phase quenched to liquid nitrogen belongs to P2 type, space group P63/mmc (no. 194), a = 3.0123 Å(2), c = 11.2264 Å(7) for x ≈ 0.74 at 298 K. The stabilisation of P2 versus O3-type structure at high temperatures seems to be due to alkali distribution over greater number of sites thus increasing entropy and decreasing Na+–Na+ repulsion. © 2005 Elsevier Ltd.
- ItemOxygen permeability, thermal expansion and stability of SrCo0.8Fe0.2O3−δ–SrAl2O4 composites(Elsevier, 2007-07-15) Yaremchenko, AA; Kharton, VV; Avdeev, M; Shaula, AL; Marques, FMBAdditions of SrAl2O4 phase to mixed-conducting SrCo0.8Fe0.2O3−δ promote oxygen-vacancy ordering and brownmillerite formation at temperatures below 1050 K due to Al3+ incorporation, but also decrease thermal expansion coefficients (TECs) and improve thermal shock stability. The SrCo0.8Fe0.2O3−δ–SrAl2O4 composite membranes exhibit also a relatively high stability with respect to interaction with CO2 due to A-site deficiency of the perovskite-related phase, caused by partial SrAl2O4 dissolution. The oxygen permeability and electronic conductivity of (SrCo0.8Fe0.2O3−δ)1−x(SrAl2O4)x (x=0.3–0.7) composites are determined by the perovskite component and decrease with increasing x. Despite minor diffusion of the transition metal cations into SrAl2O4, hexagonal above 940 K and monoclinic in the low-temperature range, this phase has insulating properties. Nonetheless, at x=0.3 the oxygen permeation fluxes at 1073–1173 are similar to those through single-phase SrCo0.8Fe0.2O3−δ membranes. The average TECs of the composite materials, calculated from dilatometric data in air, vary in the ranges (10.0–11.3)×10−6 K−1 at 300–900 K and (14.7–21.1)×10−6 K−1 at 900–1100 K. The low-p(O2) stability limit and electronic transport properties of SrCo0.8Fe0.2O3−δ are briefly discussed. © 2007, Elsevier Ltd.