Browsing by Author "MacIntosh, A"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCurrent understanding and research needs for ecological risk assessments of naturally occurring radioactive materials (NORM) in subsea oil and gas pipelines(Elsevier, 2022-01) Koppel, DJ; Kho, F; Hastings, A; Crouch, D; MacIntosh, A; Cresswell, T; Higgins, SThousands of offshore oil and gas facilities are coming to the end of their life in jurisdictions worldwide and will require decommissioning. In-situ decommissioning, where the subsea components of that infrastructure are left in the marine environment following the end of its productive life, has been proposed as an option that delivers net benefits, including from: ecological benefits from the establishment of artificial reefs, economic benefits from associated fisheries, reduced costs and improved human safety outcomes for operators. However, potential negative impacts, such as the ecological risk of residual contaminants, are not well understood. Naturally occurring radioactive materials (NORM) are a class of contaminants found in some oil and gas infrastructure (e.g. pipelines) and includes radionuclides of uranium, thorium, radium, radon, lead, and polonium. NORM are ubiquitous in oil and gas reservoirs around the world and may form contamination products including scales and sludges in subsea infrastructure due to their chemistries and the physical processes of oil and gas extraction. The risk that NORM from these sources pose to marine ecosystems is not yet understood meaning that decisions made about decommissioning may not deliver the best outcomes for environments. In this review, we consider the life of NORM-contamination products in oil and gas systems, their expected exposure pathways in the marine environment, and possible ecological impacts following release. These are accompanied by the key research priorities that need to better describe risk associated with decommissioning options. © 2021 Elsevier Ltd
- ItemEcotoxicological effects of decommissioning offshore petroleum infrastructure: a systematic review(Taylor & Francis, 2021-05-07) MacIntosh, A; Dafforn, KA; Penrose, B; Chariton, AA; Cresswell, TSuccessful decommissioning of subsea oil and gas infrastructure requires a safe and effective approach to assess and manage waste products. These products, often present as scale on internals of pipelines, include naturally occurring radioactive materials (NORM) and trace metals. Understanding the potential effects of these contaminants on marine fauna is crucial to managing global decommissioning. This review is composed of two aspects: 1) a systematic review was conducted to synthesize literature on all contaminants associated with decommissioned offshore structures and the effects of NORM contaminants on marine organisms; 2) a critical review of current environmental regulations for decommissioning and characterization of petroleum scale and NORM components. Studies defining the chemical and radiological contaminants associated with decommissioned structures were very limited. The main source of contaminants was identified from offshore platforms, with none from subsea structures. Only three studies measured variable chemical effects of radium to organisms from scale materials in subsea oil and gas infrastructure. No studies measured effects on organisms from other NORM, such as lead-210 and polonium-210. Currently, there are no international regulations on subsea pipeline closure, with NORM being underreported and not addressed in environmental impact assessments. This review highlights research gaps from environmental monitoring and characterization of NORM associated with decommissioned structures. Key recommendations for future research include characterizing NORM scale and assessing effects of scale to marine organisms through direct organism exposure experiments. This review emphasizes the need to incorporate ecotoxicology into environmental risk assessment for offshore petroleum decommissioning. © 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.
- ItemRadiological risk assessment to marine biota from exposure to NORM from a decommissioned offshore oil and gas pipeline(Elsevier Ltd, 2022-08-11) MacIntosh, A; Koppel, DJ; Johansen, MP; Beresford, NA; Copplestone, D; Penrose, B; Cresswell, TScale residues can accumulate on the interior surfaces of subsea petroleum pipes and may incorporate naturally occurring radioactive materials (NORM). The persistent nature of ‘NORM scale’ may result in a radiological dose to the organisms living on or near intact pipelines. Following a scenario of in-situ decommissioning of a subsea pipelinNe, marine organisms occupying the exteriors or interiors of petroleum structures may have close contact with the scale or other NORM-associated contaminated substances and suffer subsequent radiological effects. This case study used radiological dose modelling software, including the ERICA Tool (v2.0), MicroShield® Pro and mathematical equations, to estimate the likely radiological doses and risks of effects from NORM-contaminated scale to marine biota from a decommissioned offshore oil and gas pipeline. Using activity concentrations of NORM (226Ra, 210Po, 210Pb, 228Ra, 228Th) from a subsea pipeline from Australia, environmental realistic exposure scenarios including radiological exposures from both an intact pipe (external only; accounting for radiation shielding by a cylindrical carbon steel pipe) and a decommissioned pipeline with corrosive breakthrough (resulting in both internal and external radiological exposure) were simulated to estimate doses to model marine organisms. Predicted dose rates for both the external only exposure (ranging from 26 μGy/h to 33 μGy/h) and a corroded pipeline (ranging from 300 μGy/h to 16,000 μGy/h) exceeded screening levels for radiological doses to environmental receptors. The study highlighted the importance of using scale-specific solubility data (i.e., Kd) values for individual NORM radionuclides for ERICA assessments. This study provides an approach for conducting marine organism dose assessments for NORM-contaminated subsea pipelines and highlights scientific gaps required to undertake risk assessments necessary to inform infrastructure decommissioning planning. © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.